Homotopy Analysis Method for a Fractional Order Equation with Dirichlet and Non-Local Integral Conditions
Abstract
:1. Introduction
2. Problem Setting
3. Preliminaries
4. Uniqueness of Solution
5. Solvability of the Posed Problem
6. Application of the Method
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tuan, N.H.; Ngoc, T.B.; Tatar, S.; Long, L.D. Recovery of the solute concentration and dispersion flux in an inhomogeneous time fractional diffusion equation. J. Comput. Appl. Math. 2018, 342, 96–118. [Google Scholar] [CrossRef]
- Wei, T.; Li, Y.S. Identifying a diffusion coefficient in a time-fractional diffusion equation. Math. Comput. Simul. 2018, 151, 77–95. [Google Scholar] [CrossRef]
- Widder, D.V. The Heat Equation; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Gorenflo, R.; Mainardi, F.; Moretti, D.; Paradisi, P. Time fractional diffusion: A discrete random walk approach. Nonlinear Dyn. 2002, 29, 129–143. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Bagley, R.L.; Torvik, P.J. A theoretical basis for the application of fractional calculus toviscoelasticity. J. Rheol. 1983, 27, 201–210. [Google Scholar] [CrossRef]
- Sorrentinos, G. Fractional derivative linear models for describing the viscoelastic dynamic behaviorof polymeric beams. In Proceedings of the IMAS, Saint Louis, MO, USA, 30 January–2 February 2006. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific: Singapore, 2010. [Google Scholar]
- Goloviznin, V.M.; Kisilev, V.P.; Korotkin, I.A.; Yurkov, Y.I. Direct Problems of Nonclassical Radionuclide Transfer in Geological Formations. Izv. Ross. Akad. Nauk Energ. 2004, 4, 121–130. [Google Scholar]
- Chukbar, K.V. The Stochastic Transfer and Fractional Derivatives. Zh. Eksp. Teor. Fiz. 1995, 108, 1875–1884. [Google Scholar]
- Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering; Sabatier, J.; Agrawal, O.P.; Machado, J.A.T. (Eds.) Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 2009, 71, 2391–2396. [Google Scholar] [CrossRef]
- Lazarević, M.P.; Spasić, A.M. Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math. Comput. Model. 2009, 49, 475–481. [Google Scholar] [CrossRef]
- Nieto, J.J. Maximum principles for fractional differential equations derived from Mittag–Leffler functions. Appl. Math. Lett. 2010, 23, 1248–1251. [Google Scholar] [CrossRef]
- Zhang, S.Q. Positive solutions to singular boundary value problem for nonlinear fractional differential equation. Comput. Math. Appl. 2010, 59, 1300–1309. [Google Scholar] [CrossRef]
- Mesloub, S.; Aldosari, F. Even Higher Order Fractional Initial Boundary Value Problem with Nonlocal Constraints of Purely Integral Type. Symmetry 2019, 11, 305. [Google Scholar] [CrossRef]
- Akilandeeswari, A.; Balachandran, K.; Annapoorani, N. Solvability of hyperbolic fractional partial differential equations. J. Appl. Anal. Comput. 2017, 7, 1570–1585. [Google Scholar]
- Alikhanov, A.A. A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations. arXiv 2011, arXiv:1105.4592v1. [Google Scholar] [CrossRef]
- Mesloub, S. Existence and uniqueness results for a fractional two-times evolution problem with constraints of purely integral type. Math. Methods Appl. Sci. 2016, 39, 1558–1567. [Google Scholar] [CrossRef]
- Liao, S.J. The Proposed Homotopy Analysis Techniques for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992. (In English). [Google Scholar]
- Jafari, H.; Seifi, S. Homotopy Analysis Method for solving Linear and Nonlinear Fractional Diffusion-Wave Eequation. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 2006–2012. [Google Scholar] [CrossRef]
- Chowdhury, M.S.H.; Hashim, I.; Abdulaziz, O. Comparison of homotopy analysis method and homotopy-petrubation method for purely nonlinear fin-type problems. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 371–378. [Google Scholar] [CrossRef]
- Liao, S.J. Beyond Perturbation, Introduction to the Homotopy Analysis Method; Chapman and Hall CRC: Boca Raton, FL, USA, 2004. [Google Scholar]
- Liao, S.J. On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 2004, 147, 499–513. [Google Scholar] [CrossRef]
- Li, X.; Xu, C. A Space-Time Spectral Method for the Time Fractional Diffusion Equation. SIAM J. Numer. Anal. 2009, 47, 2108–2131. [Google Scholar] [CrossRef]
- Liu, F.; Anh, V.; Turner, I.; Zhuang, P. Time fractional advection dispersion equation. J. Appl. Math. Comput. 2003, 13, 233–245. [Google Scholar] [CrossRef]
- Baleanu, D.; Mustafa, O.G. On the global existence of solutions to a class of fractional di erential equations. Comput. Math. Appl. 2010, 59, 1835–1841. [Google Scholar] [CrossRef]
- Baleanu, D.; Mustafa, O.G.; Agarwal, R.P. An existence result for a superlinear fractional di erential equation. Appl. Math. Lett. 2010, 23, 1129–1132. [Google Scholar] [CrossRef]
- Zhu, T. Existence and uniqueness of positive solutions for fractional differential equations. Bound. Value Probl. 2019, 2019, 22. [Google Scholar] [CrossRef]
- Peiguo, Z.; Xinan, H.; Lishan, L. Existence and uniqueness of the global solution for a class of nonlinear fractional integro-differential equations in a Banach space. Adv. Differ. Equ. 2019, 2019, 135. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Liao, S.J. Notes on the homotopy analysis method: Some definitions and theorems. Commun. Nonlinear Sci. Num. Simul. 2009, 14, 983–997. [Google Scholar] [CrossRef]
- Mesloub, S. A nonlinear non-local mixed problem for a second order parabolic equation. J. Math. Anal. Appl. 2006, 316, 189–209. [Google Scholar] [CrossRef] [Green Version]
0.1 | 0.2 | 0.3 | 0.5 | 0.7 | |
---|---|---|---|---|---|
0.1 | 9.628 | 5.471 | 5.844 | 4.219 | 1.217 |
0.2 | 2.215 | 7.052 | 6.679 | 1.678 | 1.134 |
0.5 | 1.444 | 1.595 | 1.599 | 1.498 | 1.552 |
0.7 | 5.240 | 5.255 | 5.255 | 5.245 | 5.250 |
0.9 | 8.490 | 8.491 | 8.491 | 8.490 | 8.491 |
1 | 2.731 | 2.731 | 2.731 | 2.731 | 2.731 |
m | x | x | x | x | ||||
---|---|---|---|---|---|---|---|---|
3 | 0.1 | 6.509 | 0.3 | 4.392 | 0.8 | 2.980 | 0.9 | 2.914 |
5 | 6.610 | 4.493 | 3.081 | 3.016 | ||||
7 | 6.618 | 4.500 | 3.089 | 3.023 | ||||
8 | 6.618 | 4.501 | 3.089 | 3.023 | ||||
9 | 6.618 | 4.501 | 3.089 | 3.024 | ||||
10 | 6.618 | 4.501 | 3.089 | 3.024 | ||||
11 | 6.618 | 4.501 | 3.089 | 3.024 | ||||
12 | 6.618 | 4.501 | 3.089 | 3.024 | ||||
13 | 6.618 | 4.501 | 3.089 | 3.024 |
m | x | x | x | x | ||||
---|---|---|---|---|---|---|---|---|
3 | 0.1 | 6.111 | 0.3 | 3.982 | 0.8 | 2.570 | 0.9 | 2.505 |
5 | 6.113 | 3.995 | 2.584 | 2.518 | ||||
7 | 6.113 | 3.996 | 2.584 | 2.518 | ||||
8 | 6.113 | 3.996 | 2.584 | 2.518 | ||||
9 | 6.113 | 3.996 | 2.584 | 2.518 | ||||
10 | 6.113 | 3.996 | 2.584 | 2.518 |
m | x | x | x | x | ||||
---|---|---|---|---|---|---|---|---|
4 | 0.1 | 7.126 | 0.3 | 5.007 | 0.8 | 3.59697 | 0.9 | 3.53141 |
8 | 7.293 | 5.176 | 3.764 | 3.698 | ||||
12 | 7.297 | 5.180 | 3.768 | 3.702 | ||||
14 | 7.297 | 5.180 | 3.768 | 3.702 | ||||
15 | 7.29 | 5.180 | 3.768 | 3.702 | ||||
16 | 7.297 | 5.180 | 3.768 | 3.702 | ||||
17 | 7.297 | 5.180 | 3.768 | 3.702 | ||||
18 | 7.297 | 5.180 | 3.768 | 3.702 |
m | x | x | x | x | ||||
---|---|---|---|---|---|---|---|---|
3 | 0.1 | 4.776 | 0.2 | 5.15228 | 0.5 | 6.50956 | 0.8 | 8.43529 |
5 | 4.807 | 5.254 | 7.071 | 9.944 | ||||
8 | 4.808 | 5.262 | 7.178 | 10.393 | ||||
11 | 4.808 | 5.262 | 7.182 | 10.423 | ||||
12 | 4.808 | 5.262 | 7.182 | 10.430 | ||||
13 | 4.808 | 5.262 | 7.182 | 10.431 | ||||
14 | 4.808 | 5.262 | 7.182 | 10.431 | ||||
15 | 4.808 | 5.262 | 7.182 | 10.431 | ||||
16 | 4.808 | 5.262 | 7.182 | 10.431 |
m | x | x | x | x | ||||
---|---|---|---|---|---|---|---|---|
3 | 0.1 | 4.501 | 0.2 | 4.743 | 0.5 | 5.742 | 0.8 | 7.306 |
5 | 4.504 | 4.756 | 5.880 | 7.812 | ||||
6 | 4.504 | 4.757 | 5.885 | 7.848 | ||||
7 | 4.504 | 4.757 | 5.886 | 7.857 | ||||
8 | 4.504 | 4.757 | 5.887 | 7.859 | ||||
10 | 4.504 | 4.757 | 5.887 | 7.860 | ||||
12 | 4.504 | 4.757 | 5.887 | 7.860 | ||||
13 | 4.504 | 4.757 | 5.887 | 7.860 | ||||
14 | 4.504 | 4.757 | 5.887 | 7.860 |
m | x | x | x | x | ||||
---|---|---|---|---|---|---|---|---|
10 | 0.1 | 5.232 | 0.2 | 5.937 | 0.5 | 8.798 | 0.8 | 13.373 |
12 | 5.232 | 5.941 | 8.871 | 13.730 | ||||
13 | 5.232 | 5.941 | 8.873 | 13.746 | ||||
14 | 5.232 | 5.941 | 8.874 | 13.754 | ||||
15 | 5.232 | 5.941 | 8.874 | 13.759 | ||||
16 | 5.232 | 5.941 | 8.874 | 13.761 | ||||
17 | 5.232 | 5.941 | 8.874 | 13.762 | ||||
18 | 5.232 | 5.941 | 8.874 | 13.762 | ||||
19 | 5.232 | 5.941 | 8.874 | 13.763 | ||||
20 | 5.232 | 5.941 | 8.874 | 13.763 | ||||
21 | 5.232 | 5.941 | 8.874 | 13.763 | ||||
22 | 5.232 | 5.941 | 8.874 | 13.763 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesloub, S.; Obaidat, S. Homotopy Analysis Method for a Fractional Order Equation with Dirichlet and Non-Local Integral Conditions. Mathematics 2019, 7, 1167. https://doi.org/10.3390/math7121167
Mesloub S, Obaidat S. Homotopy Analysis Method for a Fractional Order Equation with Dirichlet and Non-Local Integral Conditions. Mathematics. 2019; 7(12):1167. https://doi.org/10.3390/math7121167
Chicago/Turabian StyleMesloub, Said, and Saleem Obaidat. 2019. "Homotopy Analysis Method for a Fractional Order Equation with Dirichlet and Non-Local Integral Conditions" Mathematics 7, no. 12: 1167. https://doi.org/10.3390/math7121167
APA StyleMesloub, S., & Obaidat, S. (2019). Homotopy Analysis Method for a Fractional Order Equation with Dirichlet and Non-Local Integral Conditions. Mathematics, 7(12), 1167. https://doi.org/10.3390/math7121167