Change of Basis Transformation from the Bernstein Polynomials to the Chebyshev Polynomials of the Fourth Kind
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farin, G. Curves and Surface for Computer Aided Geometric Design. In Curves and Surface for Computer Aided Geometric Design; Academic Press: Boston, MA, USA, 1993; pp. 32–58. ISBN 9781483296999. [Google Scholar]
- Farouki, R.; Rajan, V. Algorithms for polynomials in Bernstein form. Comput. Aided Geom. Des. 1988, 5, 1–26. [Google Scholar] [CrossRef]
- Höllig, K.; Hörner, J. Approximation and Modelling with B-Splines. In Approximation and Modelling with B-Splines; SIAM: Philadelphia, PA, USA, 2013; Volume 132, pp. 32–58. ISBN 978-1-611972-94-8. [Google Scholar]
- Mason, J.; Handscomb, D. Chebyshev Polynomials. In Chebyshev Polynomials; ACRC Press Company: Miami, FL, USA, 2003; pp. 5–9, 156–158. ISBN 0849303559. [Google Scholar]
- Szegö, G. Orthogonal Polynomials. In Orthogonal Polynomials; American Mathematical Society Colloquium Publications: Providence, RI, USA, 1975; ISBN 0821810235. [Google Scholar]
- Rababah, A. Transformation of Chebyshev Bernstein polynomial basis. Comput. Meth. Appl. Math. 2003, 3, 608–622. [Google Scholar] [CrossRef]
- Rababah, A. Jacobi-Bernstein Basis Transformation. Comput. Meth. Appl. Math. 2004, 4, 206–214. [Google Scholar] [CrossRef]
- Rababah, A.; Al-Shbool, A. The Transformation Matrix of Chebyshev IV Bernstein Polynomial Bases. J. Math. Anal. 2016, 7, 123–129. [Google Scholar]
- Kim, T. A note on q-Bernstein polynomials. Russ. J. Math. Phys. 2011, 18, 73–82. [Google Scholar] [CrossRef]
- Kim, T.; Kim, D. Degenerate Bernstein polynomials. arXiv, 2018; arXiv:1806.06379v1. [Google Scholar] [CrossRef]
- Simsek, Y. Generating functions for unification of the multidimensional Bernstein polynomials and their applications. Math. Methods Appl. Sci. 2018, 41, 7170–7181. [Google Scholar] [CrossRef]
- Rababah, A.; Lee, B.G.; Yoo, J. A simple matrix form for degree reduction of Bézier curves using Chebyshev-Bernstein basis transformations. Appl. Math. Comput. 2006, 181, 310–318. [Google Scholar] [CrossRef]
- Jang, L.C.; Kim, D.S.; Jang, G.-W.; Kwon, J. Some identities for q-Bernoulli numbers and polynomials arising from q-Bernstein polynomials. Adv. Stud. Contemp. Math. 2018, 28, 659–667. [Google Scholar]
- Jang, L.C.; Kim, T.; Kim, D.S.; Dolgy, D.V. On p-Adic Fermionic Integrals of q-Bernstein Polynomials Associated with q-Euler Numbers and Polynomials. Symmetry 2018, 10, 311. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Ryoo, C.S.; Yao, Y. On p-adic Integral Representation of q-Bernoulli Numbers Arising from two Variable q-Bernstein Polynomials. Symmetry 2018, 10, 451. [Google Scholar] [CrossRef]
- Bayad, A.; Kim, T. Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys. 2011, 18, 133–143. [Google Scholar] [CrossRef]
- Park, J.-W.; Pak, H.K.; Rim, S.-H.; Kim, T.; Lee, S.-H. A note on the q-Bernoulli numbers and q-Bernstein polynomials. J. Comput. Anal. Appl. 2013, 15, 722–729. [Google Scholar]
- Kim, T.; Lee, B.; Lee, S.-H.; Rim, S.-H. A note on q-Bernstein polynomials associated with p-adic integral on Zp. J. Comput. Anal. Appl. 2013, 15, 584–592. [Google Scholar]
- Kim, T. A study on the q-Euler numbers and the fermionic q-integral of the product of several type q-Bernstein polynomials on Zp. Adv. Stud. Contemp. Math. 2013, 23, 5–11. [Google Scholar]
- Kim, T.; Lee, B.; Choi, J.; Kim, Y.H.; Rim, S.H. On the q-Euler numbers and weighted q-Bernstein polynomials. Adv. Stud. Contemp. Math. 2011, 21, 13–18. [Google Scholar]
- Ryoo, C.S.; Dolgy, D.V.; Kim, T.; Lee, B. A note on q-Bernstein and q-Laguerre polynomials. Proc. Jangjeon Math. Soc. 2011, 14, 291–298. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rababah, A.; Hijazi, E. Change of Basis Transformation from the Bernstein Polynomials to the Chebyshev Polynomials of the Fourth Kind. Mathematics 2019, 7, 120. https://doi.org/10.3390/math7020120
Rababah A, Hijazi E. Change of Basis Transformation from the Bernstein Polynomials to the Chebyshev Polynomials of the Fourth Kind. Mathematics. 2019; 7(2):120. https://doi.org/10.3390/math7020120
Chicago/Turabian StyleRababah, Abedallah, and Esraa Hijazi. 2019. "Change of Basis Transformation from the Bernstein Polynomials to the Chebyshev Polynomials of the Fourth Kind" Mathematics 7, no. 2: 120. https://doi.org/10.3390/math7020120
APA StyleRababah, A., & Hijazi, E. (2019). Change of Basis Transformation from the Bernstein Polynomials to the Chebyshev Polynomials of the Fourth Kind. Mathematics, 7(2), 120. https://doi.org/10.3390/math7020120