Modified Relaxed CQ Iterative Algorithms for the Split Feasibility Problem †
Abstract
:1. Introduction
2. Preliminaries
- (a)
- every weak limit point of lies in K; and
- (b)
- exists for every .
- (a)
- ;
- (b)
- ; and
- (c)
- implies for any subsequence .
3. Weak Convergence Theorems
4. Strong Convergence Theorems
- (i)
- and ;
- (ii)
- ; and
- (iii)
- and .
5. Numerical Results
Author Contributions
Funding
Conflicts of Interest
References
- Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 1994, 8, 221–239. [Google Scholar] [CrossRef]
- Byrne, C. Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 2002, 18, 441–453. [Google Scholar] [CrossRef]
- Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A. A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 2006, 51, 2353–2365. [Google Scholar] [CrossRef] [PubMed]
- Censor, Y.; Motova, A.; Segal, A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. J. Math. Anal. Appl. 2007, 327, 1244–1256. [Google Scholar] [CrossRef]
- Dong, Q.L.; Cho, Y.J.; Rassias, T.M. The projection and contraction methods for finding common solutions to variational inequality problems. Optim. Lett. 2018, 12, 1871–1896. [Google Scholar] [CrossRef]
- Dong, Q.L.; Tang, Y.C.; Cho, Y.J.; Rassias, T.M. “Optimal” choice of the step length of the projection and contraction methods for solving the split feasibility problem. J. Glob. Optim. 2018, 71, 341–360. [Google Scholar] [CrossRef]
- Dong, Q.L.; Yuan, H.B.; Cho, Y.J.; Rassias, T.M. Modified inertial Mann algorithm and Inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 2018, 12, 87–102. [Google Scholar] [CrossRef]
- Giang, D.M.; Strodiot, J.J.; Nguyen, V.H. Strong convergence of an iterative method for solving the multiple-set split equality fixed point problem in a real Hilbert space. In Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas; Springer: Berlin, Germany, 2017; Volume 111, pp. 983–998. [Google Scholar]
- He, S.; Tian, H.; Xu, H.K. The selective projection method for convex feasibility and split feasibility problems. J. Nonlinear Convex Anal. 2018, 19, 1199–1215. [Google Scholar]
- Hieu, D.V.; Cho, Y.J.; Xiao, Y. Modified extragradient algorithms for solving equilibrium problems. Optimization 2018, 67, 2003–2029. [Google Scholar] [CrossRef]
- Qu, B.; Xiu, N. A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 2005, 21, 1655–1665. [Google Scholar] [CrossRef]
- Witthayarat, U.; Cho, Y.J.; Cholamjiak, P. On solving proximal split feasibility problems and applications. Ann. Funct. Anal. 2018. [Google Scholar] [CrossRef]
- Yao, Y.; Yao, Z.; Abdou, A.A.; Cho, Y.J. Self-adaptive algorithms for proximal split feasibility problems and strong convergence analysis. Fixed Point Theory Appl. 2015, 2015, 205. [Google Scholar] [CrossRef]
- Zhao, J. Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms. Optimization 2015, 64, 2619–2630. [Google Scholar] [CrossRef]
- Zhao, J.; Hou, D. A self-adaptive iterative algorithm for the split common fixed point problems. Numer. Algorithms 2018. [Google Scholar] [CrossRef]
- Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2004, 20, 103–120. [Google Scholar] [CrossRef]
- Combettes, P.; Wajs, V. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 2005, 4, 1168–1200. [Google Scholar] [CrossRef]
- Chen, P.; Huang, J.; Zhang, X. A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 2013, 29, 025011. [Google Scholar] [CrossRef]
- Chang, S.S.; Kim, J.K.; Cho, Y.J.; Sim, J.Y. Weak and strong convergence theorems of solutions to split feasibility problem for nonspreading type mapping in Hilbert spaces. Fixed Point Theory Appl. 2014, 2014, 11. [Google Scholar] [CrossRef]
- Masad, E.; Reich, S. A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 2007, 8, 367–371. [Google Scholar]
- Qin, X.; Wang, L. A fixed point method for solving a split feasibility problem in Hilbert spaces. In Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas; Springer: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Qin, X.; Petrusel, A.; Yao, J.C. CQ iterative algorithms for fixed points of nonexpansive mappings and split feasibility problems in Hilbert spaces. J. Nonlinear Convex Anal. 2018, 19, 157–165. [Google Scholar]
- Xu, H.K. A variable Krasnosel’ski-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 2006, 22, 2021–2034. [Google Scholar] [CrossRef]
- Zhao, J.; Zong, H. Iterative algorithms for solving the split feasibility problem in Hilbert spaces. J. Fixed Point Theory Appl. 2018, 20, 11. [Google Scholar] [CrossRef]
- Fukushima, M. A relaxed projection method for variational inequalities. Math. Program. 1986, 35, 58–70. [Google Scholar] [CrossRef]
- Yang, Q. The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 2004, 20, 1261–1266. [Google Scholar] [CrossRef]
- Xu, H.K. Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 2010, 26, 105018. [Google Scholar] [CrossRef]
- He, S.; Zhao, Z. Strong convergence of a relaxed CQ algorithm for the split feasibility problem. J. Inequal. Appl. 2013, 2013, 197. [Google Scholar] [CrossRef]
- Lopez, G.; Martin, V.; Wang, F.; Xu, H.K. Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 2012, 28, 085004. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Q.; Yang, Y. The relaxed inexact projection methods for the split feasibility problem. Appl. Math. Comput. 2011, 217, 5347–5359. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, P. Adaptively relaxed algorithms for solving the split feasibility problem with a new step size. J. Inequal. Appl. 2014, 2014, 448. [Google Scholar] [CrossRef]
- Stampacchia, G. Formes bilineaires coercivites sur les ensembles convexes. C. R. Acad. Sci. Paris 1964, 258, 4413–4416. [Google Scholar]
- Lions, J.L.; Stampacchia, G. Variational inequalities. Commun. Pure Appl. Math. 1967, 20, 493–512. [Google Scholar] [CrossRef]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: London, UK, 2011; p. 38. [Google Scholar]
- He, S.; Yang, C. Solving the variational inequality problem defined on intersection of finite level sets. Abstr. Appl. Anal. 2013, 2013, 942315. [Google Scholar] [CrossRef]
- Matinez-Yanes, C.; Xu, H.K. Strong convergence of the CQ method for fixed point processes. Nonlinear Anal. 2006, 64, 2400–2411. [Google Scholar] [CrossRef]
- Moudafi, A. Viscosity approxmation methods for fixed points problems. J. Math. Anal. Appl. 2000, 241, 46–55. [Google Scholar] [CrossRef]
Iter. | |||
---|---|---|---|
1 | 7 | ||
0.9 | 5 | −0.1930 | |
0.8 | 6 | −0.1940 | |
0.7 | 6 | −0.3159 | |
0.6 | 6 | −0.3916 | |
0.5 | 6 | −0.4044 | |
0.4 | 6 | −0.4158 | |
0.3 | 8 | −0.1115 | |
0.2 | 7 | −0.4482 | |
0.1 | 10 | −0.3799 |
Iter. | |||
---|---|---|---|
1 | 9 | −0.7504 | |
0.9 | 7 | −0.1351 | |
0.8 | 4 | −0.2007 | |
0.7 | 8 | −0.1166 | |
0.6 | 6 | −0.3025 | |
0.5 | 7 | −0.1696 | |
0.4 | 9 | −0.0020 | |
0.3 | 11 | −0.0030 | |
0.2 | 8 | −0.4556 | |
0.1 | 11 | −0.5349 |
Iter. | |||
---|---|---|---|
1 | 13 | ||
0.9 | 9 | ||
0.8 | 7 | ||
0.7 | 7 | −0.0228 | |
0.6 | 8 | −0.4571 | |
0.5 | 8 | −0.6276 | |
0.4 | 9 | −0.8269 | |
0.3 | 10 | −0.9781 | |
0.2 | 11 | −1.1005 | |
0.1 | 16 | −1.1647 |
Iter. | |||
---|---|---|---|
1 | 9 | −1.0408 | |
0.9 | 8 | −0.0250 | |
0.8 | 7 | −0.0369 | −0.9827 |
0.7 | 7 | −0.3059 | −0.8919 |
0.6 | 9 | −0.1699 | −0.9188 |
0.5 | 10 | −0.2647 | −0.8608 |
0.4 | 9 | −0.1480 | −0.9394 |
0.3 | 10 | −0.0890 | −0.9616 |
0.2 | 10 | −0.3267 | −0.8054 |
0.1 | 12 | −0.2652 | −0.8550 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhao, J.; Hou, D. Modified Relaxed CQ Iterative Algorithms for the Split Feasibility Problem. Mathematics 2019, 7, 119. https://doi.org/10.3390/math7020119
Wang X, Zhao J, Hou D. Modified Relaxed CQ Iterative Algorithms for the Split Feasibility Problem. Mathematics. 2019; 7(2):119. https://doi.org/10.3390/math7020119
Chicago/Turabian StyleWang, Xinglong, Jing Zhao, and Dingfang Hou. 2019. "Modified Relaxed CQ Iterative Algorithms for the Split Feasibility Problem" Mathematics 7, no. 2: 119. https://doi.org/10.3390/math7020119
APA StyleWang, X., Zhao, J., & Hou, D. (2019). Modified Relaxed CQ Iterative Algorithms for the Split Feasibility Problem. Mathematics, 7(2), 119. https://doi.org/10.3390/math7020119