Chaotic Multi-Objective Particle Swarm Optimization Algorithm Incorporating Clone Immunity
Abstract
:1. Introduction
2. Propaedeutics
2.1. Multi-Objective Optimization Problem
2.2. Particle Swarm Optimization Algorithm
3. Pareto Entropy and Difference Entropy-Based Improvements of PSO
3.1. Parallel Cell Coordinate System
3.2. Difference Entropy Discussion
3.3. Sketch of State Inspection
- Convergence condition: or
- Divergence condition: and
- Stagnant condition: and
4. Multi-Objective Particle Swarm Optimization Algorithm Based on Clone Immunity
4.1. External Archive Update
Algorithm 1: Improved external archive updating algorithm. |
Input: (i) External archive A. (ii) Maximum size of the external archive K. (iii) New solution P obtained by the algorithm. Output: Updated external archive . Step 1: Determine and calculate the objective vector value of B. Step 2: Find the non-dominated solution set for B. Step 3: If , then ; if not, turn to Step 4. Step 4: Calculate the individual density of all particles in . Step 5: Place particles in ascending order by their individual density, and take the first K particles to compose . |
4.2. Update Strategy of the Global Best Position and Personal Best Position
Algorithm 2: Update strategy of the global best position. |
Input: (i) External archive A and the number of objective functions M. (ii) Status of the external archive. Output: Global best position. Step 1: Calculate the lattice coordinate vector of particles in the external archive. Step 2: Calculate the lattice dominant strength and individual density . Step3: Determine a and b by the status of the external archive. (i) convergence: . (ii) diversification: . (iii) stagnation: . Step 4: Sort the particles in descending order by the lattice dominant strength and in ascending order by the individual density. Step 5: Take the first a particles by the individual density and the first b particles by the lattice dominant strength to store in C. Step 6: Randomly select one particle from C as the global best position. For the update strategy of the personal best position, we adopted the following method: [24]: |
4.3. Parameter Selection Strategy
4.4. Clone Immune Strategy
Algorithm 3: Clone algorithm. |
Input: (i) External archive A and number of objective functions M. (ii) Maximum size of the clone population . Output: Clone population . Step 1: Calculate the crowding degree of the active population: . Step 2: Calculate the number of clones of each particle with the following formula: Step 3: If the total number of clone particles exceeds , add the first particles to and return . |
Algorithm 4: Recombination algorithm. |
Input: (i) Clone population and External archive A. (ii) Lower bound of particles: , upper bound of particles: , the size of the clone population: , and parameter . Output: Recombination population . Step 1: For each particle , randomly select a particle . Step 2: Generate a random number . If , calculate , , . Step 3: If , Step 3.1 If , then ; Step 3.2 Else . Step 4: Let and . Step 5: Generate a random number , if , then ; else, . Step 6: Let and . Step 7: Calculate . Step 8: Generate a random number , if , then ; else, . |
Algorithm 5: Mutation algorithm. |
Input: (i) Recombination population . (ii) Mutation parameter and parameters . (iii) Lower bound of particles: , upper bound of particles: , and size of clone population: . Output: Mutation population . Step 1: Generate a random number , if , Step 1.1 If , then ; Step 1.2 Else . Step 2: Calculate and . Step 3: Generate a random number , if , ; else, . Step 4: Calculate . |
4.5. Chaotic Strategy
Algorithm 6: Local chaotic algorithm. |
Input: (i) External archive A. (ii) Maximum number of chaotic searching agents . Output: Clone population . Step 1: Randomly generate a chaotic initial point , and chaotic searching number . Step 2: According to the logistic map equation in chaotic systems, the following chaotic series is generated: . Step 3: Renew the positions based on the following equation: . Step 4: If the termination criterion is satisfied, then output the . Otherwise, let and return to Step 2. |
4.6. Chaotic Multi-Objective Particle Swarm Optimization Algorithm Incorporating Clone Immunity (CICMOPSO)
4.7. Computational Complexity
5. Numerical Experimentation
5.1. Benchmark Function and Parameter Setting
5.2. Performance Indicators
5.3. Numerical Results
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PSO | Particle swarm optimization algorithm |
MOPSO | multi-objective particle swarm |
GA | genetic algorithm |
DE | differential evolution algorithm |
PCCS | parallel cell coordinate system |
CICMOPSO | chaos multi-objective particle swarm optimization incorporating clone immunity |
References
- Sebt, M.H.; Afshar, M.R.; Alipouri, Y. Hybridization of genetic algorithm and fully informed particle swarm for solving the multi-mode resource-constrained project scheduling problem. Eng. Optim. 2017, 49, 513–530. [Google Scholar] [CrossRef]
- Rezaei, F.; Safavi, H.R.; Mirchi, A.; Madani, K. f-MOPSO: An Alternative Multi-Objective PSO Algorithm for Conjunctive Water Use Management. J. Hydro-Environ. Res. 2017, 14, 1–18. [Google Scholar] [CrossRef]
- Punnathanam, V.; Kotecha, P. Multi-objective optimization of Stirling engine systems using Front-based Yin-Yang-Pair Optimization. Energy Convers. Manag. 2017, 133, 332–348. [Google Scholar] [CrossRef]
- Bendu, H.; Deepak, B.B.V.L.; Murugan, S. Multi-objective optimization of ethanol fuelled HCCI engine performance using hybrid GRNN-PSO. Appl. Energy 2017, 187, 601–611. [Google Scholar] [CrossRef]
- Zhang, Y.; Jun, Y.; Wei, G.; Wu, L. Find multi-objective paths in stochastic networks via chaotic immune PSO. Expert Syst. Appl. 2010, 37, 1911–1919. [Google Scholar] [CrossRef]
- Emary, E.; Zawbaa, H.M.; Hassanien, A.E.; Parv, B. Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search. Adv. Data Anal. Classif. 2017, 11, 611–627. [Google Scholar] [CrossRef]
- Zawbaa, H.M.; Emary, E.; Grosan, C.; Snasel, V. Large-dimensionality small-instance set feature selection: A hybrid bio-inspired heuristic approach. Swarm Evol. Comput. 2018, 42, 29–42. [Google Scholar] [CrossRef]
- Zawbaa, H.M.; Szlek, J.; Grosan, C.; Jachowicz, R.; Mendyk, A. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres-Focus on Feature Selection. PLoS ONE 2016, 11, e0157610. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Ji, G.; Yang, J.; Wu, J.; Wei, L. Fruit Classification by Wavelet-Entropy and Feedforward Neural Network Trained by Fitness-Scaled Chaotic ABC and Biogeography-Based Optimization. Entropy 2015, 17, 5711–5728. [Google Scholar] [CrossRef] [Green Version]
- Zawbaa, H.M.; Schiano, S.; Perez-Gandarillas, L.; Grosan, C.; Michrafy, A.; Wu, C.Y. Computational intelligence modelling of pharmaceutical tabletting processes using bio-inspired optimization algorithms. Adv. Poeder Technol. 2018, 29, 2966–2977. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the International Conference on Neural Networks, ICNN’95, Paris, France, 9–13 October 1995; IEEE: Piscataway, NJ, USA, 2002; Volume 4, pp. 1942–1948. [Google Scholar]
- Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS’95, Nagoya, Japan, 4–6 October 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 39–43. [Google Scholar]
- Reyes-Sierra, M.; Coello Coello, C.A. Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. Int. J. Comput. Intell. Res. 2006, 2, 287–308. [Google Scholar]
- Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256–279. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Gu, X. The Application of Hybrid Genetic Particle Swarm Optimization Algorithm in the Distribution Network Reconfigurations Multi-Objective Optimization. In Proceedings of the International Conference on Natural Computation, Haikou, China, 24–27 August 2017; IEEE: Piscataway, NJ, USA, 2007; pp. 455–459. [Google Scholar]
- Reynolds, R.G. An Introduction to Cultural Algorithms. In Proceedings of the 3rd Annual Conference on Evolutionary Programming, San Diego, CA, USA, 24–26 February 1994; World Scientific Press: Singapore, 1994; pp. 131–139. [Google Scholar]
- Su, Y.X.; Chi, R. Multi-objective particle swarm-differential evolution algorithm. Neural Comput. Appl. 2017, 28, 407–418. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization: An Overview. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Sengupta, S.; Basak, S.; Peters, R. Particle Swarm Optimization: A Survey of Historical and Recent Developments with Hybridization Perspectives. Mach. Learn. Knowl. Extr. 2018, 1, 10. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Y.; Wang, H. A hybrid Particle Swarm Evolutionary Algorithm for Constrained Multi-Objective Optimization. Comput. Inf. 2010, 29, 701–718. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the IEEE ICEC Conference, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Wang, H.U.; Yen, G.G.; Xin, Z. Multiobjective Particle Swarm Optimization Based on Pareto Entropy. J. Softw. 2014, 25, 1025–1050. [Google Scholar]
- Daneshyari, M.; Yen, G.G. Cultural-based multiobjective particle swarm optimization. IEEE Trans. Syst. Man Cybern. Part B 2011, 41, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Fang, Z. Particle swarm optimization algorithm with weight function’s learning factor. J. Comput. Appl. 2013, 33, 2265–2268. [Google Scholar] [CrossRef]
- Liu, J.H.; Gao, Y.L. Multi-objective Particle Swarm Optimization with Non-dominated Neighbor immune strategy. J. Taiyuan Univ. Technol. 2014, 45, 769–775. [Google Scholar]
- Zitzler, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evol. Comput. 2000, 8, 173–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable multi-objective optimization test problems. In Proceedings of the 2002 Congress on Evolutionary Computation CEC’02, Honolulu, HI, USA, 12–17 May 2002; IEEE: Piscataway, NJ, USA, 2002; pp. 825–830. [Google Scholar]
- Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm; Techn. Rep. TIK-Report 103; Swiss Federal Institute of Technology (ETH): Zurich, Switzerland, 2001. [Google Scholar]
tab | F1 | F2 | F3 | |||
---|---|---|---|---|---|---|
1 | 0.5377 | 1.8339 | −2.2588 | 4 | 8 | 1 |
2 | 0.8622 | 0.3188 | −1.3077 | 5 | 5 | 2 |
3 | −0.4336 | 0.3426 | 3.5784 | 2 | 5 | 8 |
4 | 2.7694 | −1.3499 | 3.0349 | 8 | 1 | 8 |
5 | 0.725 | −0.0631 | 0.7147 | 4 | 4 | 5 |
6 | −0.2050 | −0.1241 | 1.4897 | 3 | 4 | 6 |
7 | 1.4090 | 1.4172 | 0.6715 | 6 | 7 | 5 |
8 | −1.2075 | 0.7172 | 1.6302 | 1 | 6 | 6 |
Name | Objective Functions | D | Variable Bounds |
---|---|---|---|
ZDT1 | 30 | ||
ZDT2 | 30 | ||
ZDT3 | 30 | ||
ZDT4 | 10 | ||
ZDT6 | 10 |
Name | Objective Functions | D | Variable Bounds |
---|---|---|---|
DTLZ1 | 30 | ||
DTLZ2 | 30 | ||
DTLZ3 | 30 | ||
DTLZ4 | 30 | ||
DTLZ5 | 30 | ||
DTLZ6 | 30 |
NSGA-II | SPEA2 | NICPSO | CICMOPSO | ||
---|---|---|---|---|---|
ZDT1 | Aver | ||||
Var | |||||
ZDT2 | Aver | ||||
Var | |||||
ZDT3 | Aver | ||||
Var | |||||
ZDT4 | Aver | ||||
Var | |||||
ZDT6 | Aver | ||||
Var |
NSGA-II | SPEA2 | NICPSO | CICMOPSO | ||
---|---|---|---|---|---|
ZDT1 | Aver | ||||
Var | |||||
ZDT2 | Aver | ||||
Var | |||||
ZDT3 | Aver | ||||
Var | |||||
ZDT4 | Aver | ||||
Var | |||||
ZDT6 | Aver | ||||
Var |
Convergence | Uniformity | |||
---|---|---|---|---|
Aver | Var | Aver | Var | |
DTlZ1 | ||||
DTlZ2 | ||||
DTlZ3 | ||||
DTlZ4 | ||||
DTlZ5 | ||||
DTlZ6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Gao, Y.; Shi, X. Chaotic Multi-Objective Particle Swarm Optimization Algorithm Incorporating Clone Immunity. Mathematics 2019, 7, 146. https://doi.org/10.3390/math7020146
Sun Y, Gao Y, Shi X. Chaotic Multi-Objective Particle Swarm Optimization Algorithm Incorporating Clone Immunity. Mathematics. 2019; 7(2):146. https://doi.org/10.3390/math7020146
Chicago/Turabian StyleSun, Ying, Yuelin Gao, and Xudong Shi. 2019. "Chaotic Multi-Objective Particle Swarm Optimization Algorithm Incorporating Clone Immunity" Mathematics 7, no. 2: 146. https://doi.org/10.3390/math7020146
APA StyleSun, Y., Gao, Y., & Shi, X. (2019). Chaotic Multi-Objective Particle Swarm Optimization Algorithm Incorporating Clone Immunity. Mathematics, 7(2), 146. https://doi.org/10.3390/math7020146