Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution
Abstract
:1. Introduction and Preliminaries
2. MSM Fractional Integral Representations of Extended Mittag-Leffler Function
3. MSM Fractional Differential Representations of Extended Mittag-Leffler Function
4. Caputo-Type MSM Fractional Differentiation of Extended Mittag-Leffler Function
5. Extended Mittag-Leffler Function and Statistical Distribution
- is non-decreasing
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, J.H. Fractal calculus and its geometrical explanation. Res. Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
- Brouers, F.; Sotolongo-Costa, O. Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Phys. A Stat. Mech. Its Appl. 2006, 368, 165–175. [Google Scholar] [CrossRef]
- Brouers, F. The fractal (BSf) kinetics equation and its approximations. J. Mod. Phys. 2014, 5, 1594–1601. [Google Scholar] [CrossRef]
- Atangana, A. Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 2017, 102, 396–406. [Google Scholar] [CrossRef]
- Kosmidis, K.; Macheras, P. On the dilemma of fractal or fractional kinetics in drug release studies: A comparison between Weibull and Mittag-Leffler functions. Int. J. Pharm. 2018, 43, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Khalili Golmankhaneh, A.; Baleanu, D. New derivatives on the fractal subset of real-line. Entropy 2016, 18, 1. [Google Scholar] [CrossRef]
- Meilanov, R.P.; Yanpolov, M.S. Features of the phase trajectory of a fractal oscillator. Tech. Phys. Lett. 2002, 28, 30–32. [Google Scholar] [CrossRef]
- Chen, W.; Liang, Y. New methodologies in fractional and fractal derivatives modeling. Chaos Solitons Fractals 2017, 102, 72–77. [Google Scholar] [CrossRef]
- Ahokposi, D.P.; Atangana, A.; Vermeulen, D.P. Modelling groundwater fractal flow with fractional differentiation via Mittag-Leffler law. Eur. Phys. J. Plus 2017, 132, 165. [Google Scholar] [CrossRef]
- Yang, Y.J.; Baleanu, D.; Yang, X.J. A local fractional variational iteration method for Laplace equation within local fractional operators. Abstr. Appl. Anal. 2013, 2013, 6. [Google Scholar] [CrossRef]
- Abolhasani, M.; Abbasbandy, S.; Allahviranloo, T. A New Variational Iteration Method for a Class of Fractional Convection-Diffusion Equations in Large Domains. Mathematics 2017, 5, 26. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. Variational iteration method for fractional calculus—A universal approach by Laplace transform. Adv. Differ. Equ. 2013, 2013, 18. [Google Scholar] [CrossRef]
- Wu, G.C. A fractional variational iteration method for solving fractional nonlinear differential equations. Comput. Math. Appl. 2011, 61, 2186–2190. [Google Scholar] [CrossRef]
- Ziane, D.; Cherif, M.H. Variational iteration transform method for fractional differential equations. J. Interdiscip. Math. 2018, 21, 185–199. [Google Scholar] [CrossRef]
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Wiman, A. Über den fundamentalsatz in der theorie der funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Dorrego, G.A.; Cerutti, R.A. The k-Mittag-Leffler function. Int. J. Contemp. Math. Sci. 2012, 7, 705–716. [Google Scholar]
- Goren, O.R.; Mainardi, F.; Srivastava, H.M. Special functions in fractional relaxation oscillation and fractional diffusion-wave phenomena. In Proceedings of the Eighth International Colloquium on Differential Equations; VSP Publishers: London, UK, 1998; pp. 195–202. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Rogosin, S.V. On the generalized Mittag-Lefler type functions. Integral Transforms Spec. Funct. 1998, 7, 215–224. [Google Scholar] [CrossRef]
- Rahman, G.; Agarwal, P.; Mubeen, S.; Arshad, M. Fractional integral operators involving extended Mittag-Leffler function as its Kernel. Bol. Soc. Mat. Mex. 2017, 24, 381–392. [Google Scholar] [CrossRef]
- Rahman, G.; Baleanu, D.; Al-Qurashi, M.; Purohit, S.D.; Mubeen, S.; Arshad, M. The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 4244–4253. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Özarslan, M.A.; Yilmaz, B. The extended Mittag-Leffler function and its properties. J. Inequal. Appl. 2014, 2014, 85. [Google Scholar] [CrossRef]
- Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Euler’s beta function. J. Comput. Appl. Math. 1997, 78, 19–32. [Google Scholar] [CrossRef]
- Sharma, S.C.; Devi, M. Certain properties of extended Wright generalized hypergeometric function. Ann. Pure Appl. Math. 2015, 9, 45–51. [Google Scholar]
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Marichev, O.I. Volterra equation of Mellin convolution type with a horn function in the kernel. Izv. Akad. Nauk BSSR Ser. Fiz.-Mat. Nauk 1974, 1, 128–129. [Google Scholar]
- Saigo, M.; Maeda, N. More generalization of fractional calculus. In Transform Methods & Special Functions; Bulgarian Academy of Sciences: Sofia, Bulgaria, 1998; Volume 96, pp. 386–400. [Google Scholar]
- Baleanu, D.; Kumar, D.; Purohit, S.D. Generalized fractional integrals of product of two H-functions and a general class of polynomials. Int. J. Comput. Math. 2016, 93, 1320–1329. [Google Scholar] [CrossRef]
- Kumar, D.; Purohit, S.D.; Choi, J. Generalized fractional integrals involving product of multivariable H-function and a general class of polynomials. J. Nonlinear Sci. Appl. 2016, 9, 8–21. [Google Scholar] [CrossRef]
- Mondal, S.R.; Nisar, K.S. Marichev-Saigo-Maeda fractional integration operators involving generalized Bessel functions. Math. Probl. Eng. 2014, 2014, 274093. [Google Scholar] [CrossRef]
- Purohit, S.D.; Suthar, D.L.; Kalla, S.L. Marichev-Saigo-Maeda fractional integration operators of the Bessel function. Matematiche 2012, 67, 21–32. [Google Scholar]
- Chouhan, A.; Khan, A.M.; Saraswat, S. A note on Marichev-Saigo-Maeda fractional integral operator. J. Frac. Calc. Appl. 2014, 5, 88–95. [Google Scholar]
- Misra, V.N.; Suthar, D.L.; Purohit, S.D. Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function. Cogent Math. 2017, 4, 1320830. [Google Scholar] [CrossRef]
- Nisar, K.S.; Atangana, A.; Purohit, S.D. Marichev-Saigo-Maeda fractional operator representations of generalized Struve function. arXiv, 2016; arXiv:1607.02756. [Google Scholar]
- Kataria, K.K.; Vellaisamy, P. The generalized k-Wright function and Marichev-Saigo-Maeda fractional operators. J. Anal. 2015, 23, 75–87. [Google Scholar]
- Kilbas, A.A.; Sebastian, N. Generalized fractional integration of Bessel function of the first kind. Integral Transform. Spec. Funct. 2008, 19, 869–883. [Google Scholar] [CrossRef]
- Rahman, G.; Ghaffar, A.; Mubeen, S.; Arshad, M.; Khan, S.U. The composition of extended Mittag-Leffler functions with pathway integral operator. Adv. Differ. Equ. 2017, 2017, 176. [Google Scholar] [CrossRef]
- Rahman, G.; Ghaffar, A.; Nisar, K.S.; Mubeen, S. A new class of integrals involving extended Mittag-Leffler functions. J. Fract. Calc. Appl. 2018, 9, 222–231. [Google Scholar]
- Nisar, K.S.; Eata, A.F.; Dhaifallah, M.D.; Choi, J. Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution. Adv. Differ. Equ. 2016, 2016, 304. [Google Scholar] [CrossRef]
- Daiya, J.; Ram, J. k-Generalized Mittag-Leffler statistical distribution. J. Glob. Res. Math. Arch. (JGRMA) 2013, 1, 61–68. [Google Scholar]
- Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 2011, 51. [Google Scholar] [CrossRef]
- Ram, C.; Choudhary, P.; Gehlot, K.S. Statistical distribution of k-Mittag-Leffler function. Palest. J. Math 2014, 3, 269–272. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araci, S.; Rahman, G.; Ghaffar, A.; Azeema; Nisar, K.S. Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution. Mathematics 2019, 7, 248. https://doi.org/10.3390/math7030248
Araci S, Rahman G, Ghaffar A, Azeema, Nisar KS. Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution. Mathematics. 2019; 7(3):248. https://doi.org/10.3390/math7030248
Chicago/Turabian StyleAraci, Serkan, Gauhar Rahman, Abdul Ghaffar, Azeema, and Kottakkaran Sooppy Nisar. 2019. "Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution" Mathematics 7, no. 3: 248. https://doi.org/10.3390/math7030248
APA StyleAraci, S., Rahman, G., Ghaffar, A., Azeema, & Nisar, K. S. (2019). Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution. Mathematics, 7(3), 248. https://doi.org/10.3390/math7030248