Next Article in Journal
Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions
Previous Article in Journal
3D Visualization through the Hologram for the Learning of Area and Volume Concepts
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution

1
Department of Economics, Faculty of Economics, Administrative and Social Sciences, Hasan Kalyoncu University, Gaziantep TR-27410, Turkey
2
Department of Mathematics, Shaheed Benazir Bhutto University, Sharingal, Upper Dir 18000, Pakistan
3
Department of Mathematical Science, BUITEMS, Quetta 87300, Pakistan
4
Department of Mathematics, SBK Women University, Quetta 87300, Pakistan
5
Department of Mathematics, College of Arts and Science, Prince Sattam bin Abdulaziz University, Wadi Aldawaser 11991, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(3), 248; https://doi.org/10.3390/math7030248
Submission received: 25 December 2018 / Revised: 3 March 2019 / Accepted: 6 March 2019 / Published: 10 March 2019

Abstract

:
Several fractional calculus operators have been introduced and investigated. In this sequence, we aim to establish the Marichev-Saigo-Maeda (MSM) fractional calculus operators and Caputo-type MSM fractional differential operators of extended Mittag-Leffler function (EMLF). We also investigate the statistical distribution associated with the EMLF. Finally, we derive some of the particular cases of the main results.

1. Introduction and Preliminaries

Fractional calculus (FC) is a discipline of mathematics that derives from the conventional definitions of integral and derivative operators by considering fractional values. The reason for attracting the scientist towards FC is that fractional derivatives have been recognized as powerful modeling and simulation tools for engineering problems. Many physical laws are expressed more accurately in terms of differential equations of arbitrary order. The fractal calculus can efficiently deal with kinetics, which is termed the fractal kinetics [1,2,3]. The Mittag-Leffler (M-L) function and its generalizations are widely used in the field of fractals. The generalized M-L law with fractal calculus appears in [4]. The use of M-L function in the medical field with fractals is given in [5]. In [6], authors defined the M-L function on fractal sets. For more details about the use of the Mittag-Leffler function in the field of fractal calculus and applications, interested readers can refer to [7,8,9]. FC has potential applications in the variational iteration method (VIM). In [10], authors used the local fractional operators to investigate the application of local fractional VIM for solving the local fractional Laplace equations. A new VIM for a class of fractional convection-diffusion equations is given in [11]. Numerous papers on VIM and its various applications are found in many research articles [12,13,14].
The Mittag-Leffler (M-L) function introduced in [15] as
E ρ ( x ) = n = 0 x n Γ ( ρ n + 1 ) ( x C ; ( ρ ) > 0 ) .
Here and in the following, let C , R + , Z 0 , and N be the sets of complex numbers, positive real numbers, non-positive integers, and positive integers, respectively, and let N 0 : = N { 0 } . Many generalizations of the M-L function (1) and the following Wiman’s generalization [16]
E ρ , σ ( x ) = n = 0 x n Γ ( ρ n + σ ) ( x , σ C ; ( ρ ) > 0 )
have been presented and applied to a variety of research subjects (see, e.g., [17,18,19,20,21]).
Prabhakar [22] introduced the following generalized M-L function
E ρ , σ γ ( x ) = n = 0 ( γ ) n Γ ( ρ n + σ ) x n n ! ( x , σ , γ C ; ( ρ ) > 0 ) ,
where ( λ ) ν denotes the Pochhammer symbol defined (for λ , ν C ), in terms of the familiar Gamma function Γ (see, e.g., Section 1.1 of [23]), by
( λ ) ν : = Γ ( λ + ν ) Γ ( λ ) = 1 ( ν = 0 ; λ C { 0 } ) λ ( λ + 1 ) ( λ + n 1 ) ( ν = n N ; λ C ) .
Ozarslan and Yilmaz [24] introduced and investigated the following extended M-L function
E θ , ϑ γ ; c ( x ; p ) = n = 0 B p ( γ + n , c γ ) ( c ) n B ( γ , c γ ) Γ ( θ n + ϑ ) x n n ! ( x , ϑ C ; p 0 ; ( c ) > ( γ ) > 0 , ( θ ) > 0 ) .
Here B p ( x , y ) is the extended beta function defined by (see [25])
B p ( x , y ) = 0 1 u x 1 ( 1 u ) y 1 e p u ( 1 u ) d u ( min { ( p ) , ( x ) , ( y ) } > 0 ) ,
where B 0 ( x , y ) = B ( x , y ) is the familiar beta function given by (see, e.g., Section 1.1 of [23])
B ( x , y ) = 0 1 u x 1 ( 1 u ) y 1 d u ( min { ( x ) , ( y ) } > 0 ) Γ ( x ) Γ ( y ) Γ ( x + y ) x , y C Z 0 .
The familiar generalized hypergeometric series r F s is defined by (see, e.g., Section 1.5 of [23])
r F s α 1 , , α r ; β 1 , , β s ; x = n = 0 ( α 1 ) n ( α r ) n ( β 1 ) n ( β s ) n x n n ! = r F s ( α 1 , , α r ; β 1 , , β s ; x ) .
Sharma and Devi [26] introduced and investigated the following extended Wright generalized hypergeometric function
r + 1 Ψ s + 1 a i , A i 1 , r , ( γ , 1 ) ; b j , B j 1 , s , ( c , 1 ) ; x ; p = 1 Γ ( c γ ) k = 0 i = 1 r Γ a i + k A i j = 1 s Γ b j + k B j B p ( γ + k , c γ ) x k k ! ( ( p ) > 0 , ( c ) > ( γ ) > 0 ; r , s N 0 ; a i , b j C , A i , B j R + , i = 1 , , r , j = 1 , , s ) ,
where the empty product is understood to be 1 and when the summation is assumed to be convergent.
We recall the fractional integral operators with the Appell function F 3 (see, e.g., [27], p. 53, Equation (6)) as a kernel (see [28,29]): The generalized fractional integral operators involving the Appell functions F 3 are defined for ν , ν , ξ , ξ , ϑ C with ( ϑ ) > 0 and x R + as follows:
I 0 + ν , ν , ξ , ξ , ϑ f ( x ) = x ν Γ ( ϑ ) 0 x ( x t ) ϑ 1 t ν F 3 ν , ν , ξ , ξ ; ϑ ; 1 t x , 1 x t f ( t ) d t
and
I ν , ν , ξ , ξ , ϑ f ( x ) = x ν Γ ( ϑ ) x ( t x ) ϑ 1 t ν F 3 ν , ν , ξ , ξ ; ϑ ; 1 t x , 1 x t f ( t ) d t .
The integral operators of the types (9) and (10) have been introduced by Marichev [28] and later extended and studied by Saigo and Maeda [29]. Recently, many researchers (see [30,31,32,33,34,35,36]) have studied the image formulas for MSM fractional integral operators involving various special functions.
The corresponding fractional differential operators have their respective forms:
D 0 + ν , ν , ξ , ξ , ϑ f x = d d x ϑ + 1 I 0 + ν , ν , ξ + ϑ + 1 , ξ , ϑ + ϑ + 1 f x
and
D ν , ν , ξ , ξ , ϑ f x = d d x ϑ + 1 I ν , ν , ξ , ξ + ϑ + 1 , ϑ + ϑ + 1 f x .
Here, we recall the following lemmas (see [29,37]).
Lemma 1.
Let ν , ν , ξ , ξ , ϑ , ρ C be such that ( ϑ ) > 0 and
( τ ) > max { 0 , ( ν ν ξ ϑ ) , ( ν ξ ) } .
then there exists the relation
I 0 + ν , ν , ξ , ξ , ϑ t ρ 1 ( x ) = Γ ρ Γ ρ + ϑ ν ν ξ Γ τ + ξ ν Γ ρ + ξ Γ ρ + ϑ ν ν Γ ρ + ϑ ν ξ x ρ ν ν + ϑ 1 .
Lemma 2.
Let ν, ν , ξ, ξ , ϑ, ρ C such that ( ϑ ) > 0 and
( ρ ) > max { ( ξ ) , ( ν ν + ϑ ) , ( ν ξ + ϑ ) } .
then
I ν , ν , ξ , ξ , ϑ t ρ ( x ) = Γ ξ + ρ Γ ν + ν ϑ + ρ Γ ν + ξ ϑ + ρ Γ ρ Γ ν ξ + ρ Γ ν + ν + ξ ϑ + ρ x ν ν + ϑ ρ .
The left- and right-sided generalized integral transforms defined for x > 0 and ν , ξ , ϑ C , ( ν ) > 0 , respectively by (see [38])
I 0 + ν , ξ , ϑ f x = x ν ξ Γ ν 0 x x t ν 1 2 F 1 ν + ξ , ϑ ; ν ; 1 t x f t d t
and
I ν , ξ , ϑ f x = 1 Γ ν x t x ν 1 t ν ξ 2 F 1 ν + ξ , ϑ ; ν ; 1 x t f t d t ,
where 2 F 1 . is the Gauss hypergeometric series.
The left- and right-hand-sided Riemann-Liouville fractional integrals of order ν C are defined by
I 0 + ν f x = 1 Γ ν 0 x 1 ( x t ) 1 ν f ( t ) d t ( ν C , ( ν ) > 0 , x > 0 )
and
I ν f x = 1 Γ ν x 1 ( t x ) 1 ν f ( t ) d t ( ν C , ( ν ) > 0 , x < 0 ) .
Also, we need the following lemmas [38].
Lemma 3.
Let ν , ξ , ϑ C be such that ( ν ) > 0 , ( ρ ) > max [ 0 , ( ξ ϑ ) ] . Then
I 0 + ν , ξ , ϑ t ρ 1 ( x ) = Γ ρ Γ ρ + ϑ ξ Γ ρ ξ Γ ρ + ν + ϑ x ρ ξ 1 .
In particular,
I 0 + ν t ρ 1 ( x ) = Γ ρ Γ ρ + ν x ρ + ν 1 , ( ν ) > 0 , ( ρ ) > 0
and
I ϑ , ν + t ρ 1 ( x ) = Γ ρ + ϑ Γ ρ + ν + ϑ x ρ 1 , ( ν ) > 0 , ( ρ ) > ( ϑ ) .
Lemma 4.
Let ν , ξ , ϑ C be such that ( ν ) > 0 , ( ρ ) < 1 + min [ ( ξ ) , ( ϑ ) ] . Then
I ν , ξ , ϑ t ρ 1 ( x ) = Γ ξ ρ + 1 Γ ϑ ρ + 1 Γ 1 ρ Γ ν + ξ + ϑ ρ + 1 x ρ ξ 1 .
In particular,
I ν t ρ 1 ( x ) = Γ 1 ν ρ Γ 1 ρ x ρ + ν 1 , 0 < ( ν ) < 1 ( ρ )
and
K ϑ , ν t ρ 1 ( x ) = Γ ϑ ρ + 1 Γ ν + ϑ ρ + 1 x ρ 1 , ( ρ ) < 1 + ( ϑ ) .
The generalized forms of the M-L function and its properties have appeared in recent papers [39,40,41]. The objective of this paper is to present generalized fractional integral and differential operators of EMLF and their application to statistical distribution. The presented work is arranged as follows: In Section 2 and Section 3, a form of MSM fractional integral and differential representations of (5) is presented alongside its properties. In Section 4, Caputo-type MSM fractional differential operators are discussed. In Section 5, we also presented some statistical distribution regarding (5) and conclusion drawn in Section 6.

2. MSM Fractional Integral Representations of Extended Mittag-Leffler Function

Here we present generalized EMLF in view of the MSM fractional integral representations and consider some particular cases.
Theorem 1.
Let ν , ν , η , η , c , α , β , ϑ , γ , ϱ C with ( ϑ ) > 0 and ( ϱ ) > m a x 0 , ( ν + ν + η ϑ ) , ( ν η ) and p 0 . Also let x R + , then
I 0 + ν , ν , η , η , ϑ t ϱ 1 E α , β ϑ , c ( t ; p ) ( x ) = x ϱ ν ν + ϑ 1 Γ ( γ ) × 5 ψ 5 ( c , 1 ) , ( ϱ , 1 ) , ( ϱ + ϑ ν ν η , 1 ) , ( ϱ + η ν , 1 ) , ( γ , 1 ) ; ( x ; p ) ( β , α ) , ( ϱ + η , 1 ) , ( ϱ + ϑ ν η ν ) , ( ϱ + ϑ ν ν , 1 ) , ( c , 1 ) ;
Proof. 
Let S 1 be LHS of (24), then using (5), we have
S 1 = I 0 + ν , ν , η , η , ϑ t ϱ 1 E α , β ϑ , c ( t ; p ) ( x ) = I 0 + ν , ν , η , η , ϑ t ϱ 1 n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) t n n ! ( x )
Interchanging summation and integration order which is verified under the condition in this theorem, we get
S 1 = n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! I 0 + ν , ν , η , η , ϑ t ϱ + n 1 ( x )
Applying the Lemma 1, we get
S 1 = n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! × Γ ( ϱ + n ) Γ ( ϱ + ϑ ν ν η + n ) Γ ( ϱ + η ν + n ) Γ ( ϱ + η + n ) Γ ( ϱ + ϑ ν ν + n ) Γ ( ϱ + ϑ ν η + n ) x ϱ + n + ϑ ν ν 1 = n = 0 B p ( γ + n , c γ ) Γ ( γ ) Γ ( c γ ) Γ ( c + n ) Γ ( α n + β ) n ! × Γ ( ϱ + n ) Γ ( ϱ + ϑ ν ν η + n ) Γ ( ϱ + η ν + n ) Γ ( ϱ + η + n ) Γ ( ϱ + ϑ ν ν + n ) Γ ( ϱ + ϑ ν η + n ) x ϱ + n + ϑ ν ν 1 = x ϱ + ϑ ν ν 1 Γ ( γ ) 0 B p ( ϑ + n , c ϑ ) Γ ( c γ ) Γ ( c + n ) Γ ( α n + β ) × Γ ( ϱ + n ) Γ ( ϱ + ϑ ν ν η + n ) Γ ( ϱ + η ν + n ) Γ ( ϱ + η + n ) Γ ( ϱ + ϑ ν ν + n ) Γ ( ϱ + ϑ ν η + n ) x n n ! .
Thus, by using (8), we get the result. □
Corollary 1.
Let ν , η , c , α , β , ϑ , ϱ C with ( ϑ ) > 0 and ( ϱ ) > m a x 0 , ( η ϑ ) and p 0 . Also let x R + , then
I 0 + ν , η , ϑ t ϱ 1 E α , β γ , c ( t ; p ) ( x ) = x ϱ + ϑ 1 Γ ( γ ) × 4 ψ 4 ( c , 1 ) , ( ϱ , 1 ) , ( ϱ + ϑ η , 1 ) , ( γ , 1 ) ; ( x ; p ) ( c , 1 ) ( β , α ) , ( ϱ η , 1 ) , ( ϱ + ϑ + ν , 1 ) ;
Theorem 2.
Let ν , ν , η , η , α , β , ϑ , γ , ϱ C with ( ν ) > 0 and ( ϱ ) > m a x ( η ) , ( ν ν + ϑ ) , ( ν η + ϑ ) and p 0 . Also let x R + , then
I ν , ν , η , η , ϑ t ϱ 1 E α , β γ , c ( t ; p ) ( x ) = x ϱ ν ν + ϑ Γ ( γ ) × 5 ψ 5 ( c , 1 ) , ( ϱ η , 1 ) , ( ν + ν ϑ + ϱ , 1 ) , ( ν + η ϑ + ϱ , 1 ) , ( γ , 1 ) ; ( x ; p ) ( c , 1 ) , ( β , α ) , ( 1 , 1 ) ( ν η + ϱ , 1 ) , ( ν + ν η ϑ + ϱ , 1 ) , ( ϑ , 1 ) ;
Proof. 
Let S 2 be LHS of (26), then using (5), we have
S 2 = I ν , ν , η , η , ϑ t ϱ 1 E α , β γ , c ( t ; p ) ( x ) = I ν , ν , η , η , ϑ t ϱ 1 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) t n n ! ( x )
Interchanging the order of summation and integration i.e., verified under the condition in this theorem, we get
S 2 = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! I ν , ν , η , η , ϑ t ϱ + n 1 ( x )
Applying the Lemma 2, we get
S 2 = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! Γ ( η + ϱ + n ) Γ ( ν + ν + ϱ ϑ + n ) Γ ( ν + ϱ + η ϑ + n ) Γ ( ϱ + n ) Γ ( ϱ η + ν + n ) Γ ( ϱ + ν + ν η ϑ + n ) x ϱ + n + ϑ ν ν = 0 B p ( γ + n , c γ ) Γ ( γ ) Γ ( c γ ) Γ ( c + n ) Γ ( α n + β ) n ! × Γ ( η + ϱ + n ) Γ ( ν + ν + ϱ ϑ + n ) Γ ( ν + ϱ + η ϑ + n ) Γ ( ϱ + n ) Γ ( ϱ η + ν + n ) Γ ( ϱ + ν + ν η ϑ + n ) x ϱ + n + ϑ ν ν = x ϱ + ϑ ν ν Γ ( γ ) 0 B p ( γ + n , c γ ) Γ ( c γ ) Γ ( c + n ) Γ ( α n + β ) × Γ ( η + ϱ + n ) Γ ( ν + ν + ϱ ϑ + n ) Γ ( ν + ϱ + η ϑ + n ) Γ ( ϱ + n ) Γ ( ϱ η + ν + n ) Γ ( ϱ + ν + ν η ϑ + n ) x n n !
Again, by using (8), we arrived the desired result.  □
Corollary 2.
Let ν , η , c , α , β , γ , ϑ , ϱ C with ( ϑ ) > 0 and ( ϱ ) > m a x ( η ) , ( ϑ ) and p 0 . Also let x R + , then
I ν , η , ϑ t ϱ 1 E α , β γ , c ( t ; p ) ( x ) = x ϱ η 1 Γ ( γ ) × 4 ψ 4 ( c , 1 ) , ( η ϱ + 1 , 1 ) , ( ϑ ϱ + 1 , 1 ) , ( γ , 1 ) ; ( x ; p ) ( c , 1 ) , ( β , α ) , ( 1 ϱ , 1 ) , ( ν + η + ϑ ϱ + 1 , 1 ) ;

3. MSM Fractional Differential Representations of Extended Mittag-Leffler Function

In this part, we present the MSM fractional differentiation of (5). We recall the following lemmas (see [37]).
Lemma 5.
Let ν, ν , ξ , ξ , ϑ, ρ C such that
ρ > max 0 , ν + ξ , ν ν ξ + ϑ .
then
D 0 + ν , ν , ξ , ξ , ϑ t ρ 1 x = Γ ρ Γ ξ + ν + ρ Γ ν + ν + ξ ϑ + ρ Γ ξ + ρ Γ ν + ν ϑ + ρ Γ ν + ξ ϑ + ρ x ν + ν ϑ + ρ 1 .
Lemma 6.
Let ν, ν , ξ, ξ , ϑ, ρ C such that
ρ > max ξ , ν + ξ ϑ , ν + ν ϑ + ϑ + 1 .
then
D ν , ν , ξ , ξ , ϑ t ρ x = Γ ξ + ρ Γ ν ν + ϑ + ρ Γ ν ξ + ϑ + ρ Γ ρ Γ ν + ξ + ρ Γ ν ν ξ + ϑ + ρ x ν + ν ϑ ρ .
Now, we establish the following theorems.
Theorem 3.
Let ν , ν , η , η , c , α , β , γ , ϑ , ϱ C and ( ϱ ) > m a x 0 , ( ν + η ) , ( ν ν η + ϑ ) and p 0 . Also let x R + , then
D 0 + ν , ν , η , η , ϑ t ϱ 1 E α , β γ , c ( t ; p ) ( x ) = x ϱ + ν + ν ϑ 1 Γ ( γ ) × 5 ψ 5 ( c , 1 ) , ( ϱ , 1 ) , ( ϱ + ν η , 1 ) , ( ν + ν + η ϑ + ϱ , 1 ) , ( γ , 1 ) ; ( x ; p ) ( c , 1 ) , ( β , α ) , ( ϱ η , 1 ) , ( ν + ν ϑ + ϱ , 1 ) , ( ν + ϱ ϑ + η , 1 ) ; .
Proof. 
Let S 3 be L. H. S. of (30), then using (5), we have
S 3 = D 0 + ν , ν , η , η , ϑ t ϱ 1 E α , β γ , c ( t ; p ) ( x ) = D 0 + ν , ν , η , η , ϑ t ϱ 1 n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) t n n ! ( x )
Interchanging summation and integration order i.e., verified under the condition in this theorem, we get
S 3 = n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! D 0 + ν , ν , η , η , ϑ t ϱ + n 1 ( x )
Applying the Lemma 5, we get
S 3 = n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! × Γ ( ϱ + n ) Γ ( ϱ + ν η + n ) Γ ( ϱ + ν + ν + η ϑ + n ) Γ ( ϱ η + n ) Γ ( ϱ + ν + ν ϑ + n ) Γ ( ϱ + ν + η ϑ + n ) x ϱ + n ϑ + ν + ν 1 = x ϱ ϑ + ν + ν 1 Γ ( γ ) 0 B p ( γ + n , c γ ) Γ ( c γ ) Γ ( c + n ) Γ ( α n + β ) × Γ ( ϱ + n ) Γ ( ϱ + ν η + n ) Γ ( ϱ + ν + ν + η ϑ + n ) Γ ( ϱ η + n ) Γ ( ϱ + ν + ν ϑ + n ) Γ ( ϱ + ν + η ϑ + n ) x n n !
By using (8), we get the desired result. □
Theorem 4.
Let ν , ν , η , η , c , α , β , γ , ϑ , ϱ C and
( ϱ ) > m a x ( η ) , ( ν + η ϑ ) , ( ν + ν ϑ ) + [ ( ϑ ) ] + 1
and p 0 . Also let x R + , then
D ν , ν , η , η , ϑ t ϱ E α , β γ , c ( t ; p ) ( x ) = x ν + ν ϑ ϱ Γ ( ϑ ) × 5 ψ 5 ( c , 1 ) , ( η + ϱ , 1 ) , ( ϱ ν ν + ϑ , 1 ) , ( ϱ + η ν , 1 ) , ( γ , 1 ) ; ( x ; p ) ( c , 1 ) , ( β , α ) , ( ϱ , 1 ) , ( ϱ ν + η , 1 ) , ( ϱ ν ν + ϑ η , 1 ) ; .
Proof. 
Let S 4 be LHS of (31), then using (5), we have
S 4 = D ν , ν , η , η , ϑ t ϱ E α , β γ , c ( t ; p ) ( x ) = D ν , ν , η , η , ϑ t ϱ 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) t n n ! ( x )
Interchanging summation and integration order i.e., verified under the condition in this theorem, we get
S 4 = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! D ν , ν , η , η , ϑ t ϱ + n ( x )
Applying the Lemma 6, we get
S 4 = 0 B p ( γ + n , c γ ) B p ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! × Γ ( η + ϱ + n ) Γ ( ϱ ν ν + ϑ + n ) Γ ( ϱ ν + η + ϑ + n ) Γ ( ϱ + n ) Γ ( ϱ ν + η + n ) Γ ( ϱ ν ν η + ϑ + n ) x ν + ν ϱ ϑ + n = x ν + ν ϱ ϑ Γ ( γ ) 0 B p ( γ + n , c γ ) Γ ( c γ ) Γ ( c + n ) Γ ( α n + β ) × Γ ( η + ϱ + n ) Γ ( ϱ ν ν + ϑ + n ) Γ ( ϱ ν + η + ϑ + n ) Γ ( ϱ + n ) Γ ( ϱ ν + η + n ) Γ ( ϱ ν ν η + ϑ + n ) x n n !
Again, by using (8), we get the desired result. □

4. Caputo-Type MSM Fractional Differentiation of Extended Mittag-Leffler Function

In this part, we discuss the left- and right-hand-sided Caputo-type fractional derivatives that have the Gauss hypergeometric function in the kernel are given as:
( c D 0 , + ν , ξ , ϑ f ) ( x ) = ( I 0 , + ν , + [ ( ν ) ] + 1 , ξ , ϑ + [ ( ν ) ] + 1 f [ ( ν ) ] + 1 ) ( x ) .
and
( c D ν , ξ , ϑ f ) ( x ) = ( 1 ) [ ( ν ) ] + 1 ( I ν , + [ ( ν ) ] + 1 , ξ + [ ( ν ) ] + 1 , ν + ϑ f [ ( ν ) ] + 1 ) ( x ) .
where ν , ξ , ϑ , ϱ C and x R + .
The left- and right-hand-sided Caputo-type MSM fractional differential operators:
( c D ν , ν , ξ , ξ , ϑ f ) ( x ) = ( 1 ) [ ( ν ) ] + 1 ( I ν , ν , ξ + [ ( ϑ ) ] + 1 , ξ , ϑ + [ ( ϑ ) ] + 1 , ϑ + [ ( ν ) ] + 1 f [ ( ν ) ] + 1 ) ( x ) ,
and
( c D ν , ν , ξ , ξ , ϑ f ) ( x ) = ( 1 ) [ ( ν ) ] + 1 ( I ν , ν , ξ , ξ + [ ( ϑ ) ] + 1 , ϑ + [ ( ϑ ) ] + 1 , ϑ + [ ( ν ) ] + 1 f [ ( ν ) ] + 1 ) ( x ) ,
where ν , ν , ξ , ξ , ϑ , ϱ C and x R + .
To discuss the Caputo-type MSM fractional differential operator of the extended MLF (5), the following lemmas will be required to prove the proposed result.
Lemma 7.
[37] Let ν , ν , η , η , ϑ , ϱ C and [ ( ν ) ] + 1 with ( ϱ ) m > m a x 0 , ( ν + η ) , ( ν ν η + ϑ ) and p 0 . Then
D 0 + ν , ν , η , η , ϑ t ϱ 1 ( x ) = Γ ( ϱ ) Γ ( ϱ + ν η m ) Γ ( ϱ + ν + ν + η ϑ m ) Γ ( ϱ η m ) Γ ( ϱ + ν + ν ϑ ) Γ ( ϱ + ν + η ϑ m ) x ϱ ϑ + ν + ν 1 .
Lemma 8.
[37] Let ν , ν , η , η , ϑ , ϱ C and [ ( ν ) ] + 1 with ( ϱ ) + m > m a x ( η ) , ( ν + η ϑ ) , ( ν + ν ϑ ) + [ ( ϑ ) ] + 1 . Then
D ν , ν , η , η , ϑ t ϱ ( x ) = Γ ( ϱ + η + m ) Γ ( ϱ ν ν + ϑ ) Γ ( ϱ ν η + ϑ + m ) Γ ( ϱ ) Γ ( ϱ ν + η + m ) Γ ( ϱ ν ν η + ϑ + m ) x ν + ν ϑ ϱ
Theorem 5.
Let ν , ν , η , η , c , α , β , γ , ϑ , ϱ C and m = [ ( ϑ ) + 1 ] ( ϱ ) m > m a x 0 , ( ν + η ) , ( ν ν η + ϑ ) and p 0 . Also let x R + , then
c D 0 + ν , ν , η , η , ϑ t ϱ 1 E α , β γ , c ( t ; p ) ( x ) = x ϱ + ν + ν ϑ + 1 Γ ( γ ) × 5 ψ 5 ( c , 1 ) , ( ϱ , 1 ) , ( ϱ + ν η m , 1 ) , ( ν + ν + η ϑ m + ϱ , 1 ) , ( γ , 1 ) ; ( x ; p ) ( c , 1 ) , ( β , α ) , ( ϱ η m , 1 ) , ( ν + ν ϑ + ϱ , 1 ) , ( ν + ϱ ϑ + η m , 1 ) ; .
Proof. 
Let S 5 be LHS of (36), then using (5), we have
S 5 = c D 0 + ν , ν , η , η , ϑ t ϱ 1 E α , β γ , c ( t ; p ) ( x ) = c D 0 + ν , ν , η , η , ϑ t ϱ 1 n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) t n n ! ( x )
Interchanging the order of summation and integration i.e., verified under the condition in this theorem, we get
S 5 = n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! c D 0 + ν , ν , η , η , ϑ t ϱ + n 1 ( x )
Applying the Lemma 7, we get
S 5 = n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! × Γ ( ϱ + n ) Γ ( ϱ + ν η m + n ) Γ ( ϱ + ν + ν + η ϑ m + n ) Γ ( ϱ η m + n ) Γ ( ϱ + ν + ν ϑ + n ) Γ ( ϱ + ν + η ϑ m + n ) x ϱ + n ϑ + ν + ν + 1 = x ϱ ϑ + ν + ν + 1 Γ ( γ ) n = 0 B p ( γ + n , c γ ) Γ ( c γ ) Γ ( c + n ) Γ ( α n + β ) × Γ ( ϱ + n ) Γ ( ϱ + ν η m + n ) Γ ( ϱ + ν + ν + η ϑ m + n ) Γ ( ϱ η m + n ) Γ ( ϱ + ν + ν ϑ + n ) Γ ( ϱ + ν + η ϑ m + n ) x n n !
In view of (8), we obtain the required result. □
Theorem 6.
Let ν , ν , η , η , c , α , β , γ , ϑ , ϱ C and m = [ ( ϑ ) + 1 ] with
( ϱ ) + m > m a x ( η ) , ( ν + ν ϑ ) + m
and p 0 . Also let x R + , then
c D ν , ν , η , η , ϑ t ϱ E α , β γ , c ( t ; p ) ( x ) = x ϱ + ν + ν ϑ Γ ( γ ) × 5 ψ 5 ( c , 1 ) , ( η + ϱ + m , 1 ) , ( ν ν + ϑ + ϱ , 1 ) , ( ϱ ν η + ϑ + m , 1 ) , ( γ , 1 ) ; ( x ; p ) ( c , 1 ) , ( β , α ) , ( ϱ , 1 ) , ( ν + η + m + ϱ , 1 ) , ( ν ν η + ϱ + ϑ + m , 1 ) ; .
Proof. 
Let S 6 be L. H. S. of (37), then using (5), we have
S 6 = c D ν , ν , η , η , ϑ t ϱ E α , β γ , c ( t ; p ) ( x ) = c D ν , ν , η , η , ϑ t ϱ n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) t n n ! ( x )
Interchanging summation and integration order, which is verified under the given condition, we get
S 6 = n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! c D ν , ν , η , η , ϑ t n ϱ ( x )
Applying the Lemma 8, we get
S 6 = n = 0 B p ( γ + n , c γ ) B ( γ , c γ ) ( c ) n Γ ( α n + β ) n ! × Γ ( ϱ + η + m + n ) Γ ( ϱ ν ν + ϑ + n ) Γ ( ϱ ν η + ϑ + m + n ) Γ ( ϱ + n ) Γ ( ϱ ν + η + m + n ) Γ ( ϱ ν ν η + ϑ + m + n ) x ϱ + n ϑ + ν + ν = x ϱ ϑ + ν + ν Γ ( γ ) n = 0 B p ( γ + n , c γ ) Γ ( c γ ) Γ ( c + n ) Γ ( α n + β ) × Γ ( ϱ + η + m + n ) Γ ( ϱ ν ν + ϑ + n ) Γ ( ϱ ν η + ϑ + m + n ) Γ ( ϱ + n ) Γ ( ϱ ν + η + m + n ) Γ ( ϱ ν ν η + ϑ + m + n ) x n n ! .
By using (8), we get the required result. □

5. Extended Mittag-Leffler Function and Statistical Distribution

For a random variable X, the distribution function is defined by
F ( x ) = P ( X x ) ,
where x is any real number < x < . The properties of distribution function F ( x ) as follows
  • F ( x ) is non-decreasing
  • lim x F ( x ) = 0 ; lim x F ( x ) = 1
  • F ( x ) is continuous from the right. Many authors studied the distribution function which involves the M-L function [41,42,43,44]. In this line, we develop the distribution function involving extended M-L function (5) and deduce particular cases of our result.
Theorem 7.
Let μ , β , x R + with 0 < μ 1 and also let γ , c C and ( β ) > 0 , ( γ ) > 0 , p 0 . Let
F x ( x ) = 1 E μ , β γ , c ( x μ ; p )
then the density function f ( x ) of F x ( x ) is given as follows:
f ( x ) = μ c 2 γ x μ 1 E μ , μ + β γ + 1 , c + 1 ( x μ ; p ) .
Proof. 
Using (39) and (5),we have
F x ( x ) = 1 E μ , β γ ; c ( x μ ; p ) = n = 1 ( 1 ) n + 1 B p ( γ + n , c γ ) ( c ) n B ( γ , c γ ) Γ ( μ n + β ) ( x μ ) n n ! .
Differentiating each side of (40) with respect to x gives the density function
f ( x ) = n = 1 ( 1 ) n + 1 B p ( γ + n , c γ ) ( c ) n B ( γ , c γ ) Γ ( μ n + β ) μ ( x μ n 1 ) ( n 1 ) ! .
which, upon replacing n by n + 1 , yields
f ( x ) = n = 0 ( 1 ) n B p ( γ + n + 1 , c γ ) ( c ) n + 1 B ( γ , c γ ) Γ ( μ n + μ + β ) μ ( x μ n + μ 1 ) n ! .
Now, by using the following relation in (41), we have
B ( b , c b ) = c b B ( b + 1 , c b )
f ( x ) = c γ n = 0 ( 1 ) n B p ( γ + 1 + n , c ν ) ( c ) n + 1 B ( γ + 1 , c γ ) Γ ( μ n + μ + β ) μ ( x μ n + μ 1 ) n ! .
Using the relation ( c ) n + 1 = c ( c + 1 ) n in (42), we have
= μ c 2 γ x μ 1 n = 0 B p ( γ + n + 1 , c γ ) ( c + 1 ) n B ( γ + 1 , c γ ) Γ ( μ n + μ + β ) ( x μ ) n n !
Which gives the required result. □
Corollary 3.
Let μ , x R + with 0 < μ 1 and β = 1 . Also let γ , c C and ( β ) > 0 , ( γ ) > 0 , p 0 . Let
F x ( x ) = 1 E μ , 1 γ , c ( x μ ; p ) .
then the density function f ( x ) of F x ( x ) is given as follows:
f ( x ) = μ c 2 γ x μ 1 E μ , μ + 1 γ + 1 , c + 1 ( x μ ; p ) .

6. Concluding Remarks

FC operators have significant applications in the field of science and engineering. Many research papers have been used to solve nonlinear differential equations, VIMs, and fractal related problems with the help of fractional operators. In this lineage, we established generalized fractional formulas to derive numerous results. The operators developed in this paper may have applications in applied mathematics and physics. The significant generality of these results rendered some existing results as particular cases of our result. For instance, if we let p = 0 , then we obtain MSM fractional integral, MSM fractional differential formulas and Caputo-type MSM fractional differentiation formulas of Mittag-Leffler function defined in (3) (see [34]).

Author Contributions

All authors contributed equally to this manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors express their deep gratitude to the anonymous referees for their critical comments and suggestions to improve this paper to its current form.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. He, J.H. Fractal calculus and its geometrical explanation. Res. Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
  2. Brouers, F.; Sotolongo-Costa, O. Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Phys. A Stat. Mech. Its Appl. 2006, 368, 165–175. [Google Scholar] [CrossRef]
  3. Brouers, F. The fractal (BSf) kinetics equation and its approximations. J. Mod. Phys. 2014, 5, 1594–1601. [Google Scholar] [CrossRef]
  4. Atangana, A. Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 2017, 102, 396–406. [Google Scholar] [CrossRef]
  5. Kosmidis, K.; Macheras, P. On the dilemma of fractal or fractional kinetics in drug release studies: A comparison between Weibull and Mittag-Leffler functions. Int. J. Pharm. 2018, 43, 269–273. [Google Scholar] [CrossRef] [PubMed]
  6. Khalili Golmankhaneh, A.; Baleanu, D. New derivatives on the fractal subset of real-line. Entropy 2016, 18, 1. [Google Scholar] [CrossRef]
  7. Meilanov, R.P.; Yanpolov, M.S. Features of the phase trajectory of a fractal oscillator. Tech. Phys. Lett. 2002, 28, 30–32. [Google Scholar] [CrossRef]
  8. Chen, W.; Liang, Y. New methodologies in fractional and fractal derivatives modeling. Chaos Solitons Fractals 2017, 102, 72–77. [Google Scholar] [CrossRef]
  9. Ahokposi, D.P.; Atangana, A.; Vermeulen, D.P. Modelling groundwater fractal flow with fractional differentiation via Mittag-Leffler law. Eur. Phys. J. Plus 2017, 132, 165. [Google Scholar] [CrossRef]
  10. Yang, Y.J.; Baleanu, D.; Yang, X.J. A local fractional variational iteration method for Laplace equation within local fractional operators. Abstr. Appl. Anal. 2013, 2013, 6. [Google Scholar] [CrossRef]
  11. Abolhasani, M.; Abbasbandy, S.; Allahviranloo, T. A New Variational Iteration Method for a Class of Fractional Convection-Diffusion Equations in Large Domains. Mathematics 2017, 5, 26. [Google Scholar] [CrossRef]
  12. Wu, G.C.; Baleanu, D. Variational iteration method for fractional calculus—A universal approach by Laplace transform. Adv. Differ. Equ. 2013, 2013, 18. [Google Scholar] [CrossRef]
  13. Wu, G.C. A fractional variational iteration method for solving fractional nonlinear differential equations. Comput. Math. Appl. 2011, 61, 2186–2190. [Google Scholar] [CrossRef]
  14. Ziane, D.; Cherif, M.H. Variational iteration transform method for fractional differential equations. J. Interdiscip. Math. 2018, 21, 185–199. [Google Scholar] [CrossRef]
  15. Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
  16. Wiman, A. Über den fundamentalsatz in der theorie der funktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
  17. Dorrego, G.A.; Cerutti, R.A. The k-Mittag-Leffler function. Int. J. Contemp. Math. Sci. 2012, 7, 705–716. [Google Scholar]
  18. Goren, O.R.; Mainardi, F.; Srivastava, H.M. Special functions in fractional relaxation oscillation and fractional diffusion-wave phenomena. In Proceedings of the Eighth International Colloquium on Differential Equations; VSP Publishers: London, UK, 1998; pp. 195–202. [Google Scholar]
  19. Gorenflo, R.; Kilbas, A.A.; Rogosin, S.V. On the generalized Mittag-Lefler type functions. Integral Transforms Spec. Funct. 1998, 7, 215–224. [Google Scholar] [CrossRef]
  20. Rahman, G.; Agarwal, P.; Mubeen, S.; Arshad, M. Fractional integral operators involving extended Mittag-Leffler function as its Kernel. Bol. Soc. Mat. Mex. 2017, 24, 381–392. [Google Scholar] [CrossRef]
  21. Rahman, G.; Baleanu, D.; Al-Qurashi, M.; Purohit, S.D.; Mubeen, S.; Arshad, M. The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 4244–4253. [Google Scholar] [CrossRef]
  22. Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
  23. Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
  24. Özarslan, M.A.; Yilmaz, B. The extended Mittag-Leffler function and its properties. J. Inequal. Appl. 2014, 2014, 85. [Google Scholar] [CrossRef]
  25. Chaudhry, M.A.; Qadir, A.; Rafique, M.; Zubair, S.M. Extension of Euler’s beta function. J. Comput. Appl. Math. 1997, 78, 19–32. [Google Scholar] [CrossRef]
  26. Sharma, S.C.; Devi, M. Certain properties of extended Wright generalized hypergeometric function. Ann. Pure Appl. Math. 2015, 9, 45–51. [Google Scholar]
  27. Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
  28. Marichev, O.I. Volterra equation of Mellin convolution type with a horn function in the kernel. Izv. Akad. Nauk BSSR Ser. Fiz.-Mat. Nauk 1974, 1, 128–129. [Google Scholar]
  29. Saigo, M.; Maeda, N. More generalization of fractional calculus. In Transform Methods & Special Functions; Bulgarian Academy of Sciences: Sofia, Bulgaria, 1998; Volume 96, pp. 386–400. [Google Scholar]
  30. Baleanu, D.; Kumar, D.; Purohit, S.D. Generalized fractional integrals of product of two H-functions and a general class of polynomials. Int. J. Comput. Math. 2016, 93, 1320–1329. [Google Scholar] [CrossRef]
  31. Kumar, D.; Purohit, S.D.; Choi, J. Generalized fractional integrals involving product of multivariable H-function and a general class of polynomials. J. Nonlinear Sci. Appl. 2016, 9, 8–21. [Google Scholar] [CrossRef]
  32. Mondal, S.R.; Nisar, K.S. Marichev-Saigo-Maeda fractional integration operators involving generalized Bessel functions. Math. Probl. Eng. 2014, 2014, 274093. [Google Scholar] [CrossRef]
  33. Purohit, S.D.; Suthar, D.L.; Kalla, S.L. Marichev-Saigo-Maeda fractional integration operators of the Bessel function. Matematiche 2012, 67, 21–32. [Google Scholar]
  34. Chouhan, A.; Khan, A.M.; Saraswat, S. A note on Marichev-Saigo-Maeda fractional integral operator. J. Frac. Calc. Appl. 2014, 5, 88–95. [Google Scholar]
  35. Misra, V.N.; Suthar, D.L.; Purohit, S.D. Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function. Cogent Math. 2017, 4, 1320830. [Google Scholar] [CrossRef]
  36. Nisar, K.S.; Atangana, A.; Purohit, S.D. Marichev-Saigo-Maeda fractional operator representations of generalized Struve function. arXiv, 2016; arXiv:1607.02756. [Google Scholar]
  37. Kataria, K.K.; Vellaisamy, P. The generalized k-Wright function and Marichev-Saigo-Maeda fractional operators. J. Anal. 2015, 23, 75–87. [Google Scholar]
  38. Kilbas, A.A.; Sebastian, N. Generalized fractional integration of Bessel function of the first kind. Integral Transform. Spec. Funct. 2008, 19, 869–883. [Google Scholar] [CrossRef]
  39. Rahman, G.; Ghaffar, A.; Mubeen, S.; Arshad, M.; Khan, S.U. The composition of extended Mittag-Leffler functions with pathway integral operator. Adv. Differ. Equ. 2017, 2017, 176. [Google Scholar] [CrossRef]
  40. Rahman, G.; Ghaffar, A.; Nisar, K.S.; Mubeen, S. A new class of integrals involving extended Mittag-Leffler functions. J. Fract. Calc. Appl. 2018, 9, 222–231. [Google Scholar]
  41. Nisar, K.S.; Eata, A.F.; Dhaifallah, M.D.; Choi, J. Fractional calculus of generalized k-Mittag-Leffler function and its applications to statistical distribution. Adv. Differ. Equ. 2016, 2016, 304. [Google Scholar] [CrossRef]
  42. Daiya, J.; Ram, J. k-Generalized Mittag-Leffler statistical distribution. J. Glob. Res. Math. Arch. (JGRMA) 2013, 1, 61–68. [Google Scholar]
  43. Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag-Leffler functions and their applications. J. Appl. Math. 2011, 2011, 51. [Google Scholar] [CrossRef]
  44. Ram, C.; Choudhary, P.; Gehlot, K.S. Statistical distribution of k-Mittag-Leffler function. Palest. J. Math 2014, 3, 269–272. [Google Scholar]

Share and Cite

MDPI and ACS Style

Araci, S.; Rahman, G.; Ghaffar, A.; Azeema; Nisar, K.S. Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution. Mathematics 2019, 7, 248. https://doi.org/10.3390/math7030248

AMA Style

Araci S, Rahman G, Ghaffar A, Azeema, Nisar KS. Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution. Mathematics. 2019; 7(3):248. https://doi.org/10.3390/math7030248

Chicago/Turabian Style

Araci, Serkan, Gauhar Rahman, Abdul Ghaffar, Azeema, and Kottakkaran Sooppy Nisar. 2019. "Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution" Mathematics 7, no. 3: 248. https://doi.org/10.3390/math7030248

APA Style

Araci, S., Rahman, G., Ghaffar, A., Azeema, & Nisar, K. S. (2019). Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution. Mathematics, 7(3), 248. https://doi.org/10.3390/math7030248

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop