Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions
Abstract
:1. Introduction
2. Preliminary Material
3. Existence Results
- .
4. Uniqueness of Solution
5. Ulam Stability
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zaslavsky, G.M. Hamiltonian Chaos and Fractional Dynamics; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Zhang, D.; Zhang, Y.; Zhang, Z.; Ahmed, N.; Zhang, Y.; Li, F.; Belic, M.R.; Xiao, M. Unveiling the link between fractional Schrödinger equation and light propagation in honeycomb lattice. Ann. Phys. 2017, 529, 1700149. [Google Scholar] [CrossRef]
- Fallahgoul, H.A.; Focardi, S.M.; Fabozzi, F.J. Fractional Calculus and Fractional Processes with Applications to Financial Economics. Theory and Application; Elsevier/Academic Press: London, UK, 2017. [Google Scholar]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton-toxic phytoplankton-zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Lakshimikantham, V.; Leela, S.; Devi, J.V. Theory of Fractional Dynamic Systems; Cambridge Academic Publishers: Cambridge, UK, 2009. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations. An Application—Oriented Exposition Using Differential Operators of Caputo Type; Lecture Notes in Mathematics 2004; Springer: Berlin, Germany, 2010. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Nieto, J.J. Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound. Value Probl. 2011, 2011, 36. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Zhang, J. Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval. Math. Comput. Model. 2011, 54, 1334–1346. [Google Scholar] [CrossRef]
- Bai, Z.B.; Sun, W. Existence and multiplicity of positive solutions for singular fractional boundary value problems. Comput. Math. Appl. 2012, 63, 1369–1381. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; O’Regan, D.; Stanek, S. Positive solutions for mixed problems of singular fractional differential equations. Math. Nachr. 2012, 285, 27–41. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. A study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditions. Math. Probl. Eng. 2013, 2013, 320415. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Existence results for higher order fractional differential inclusions with multi-strip fractional integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2013, 2013, 20. [Google Scholar] [CrossRef]
- O’Regan, D.; Stanek, S. Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 2013, 71, 641–652. [Google Scholar] [CrossRef]
- Zhai, C.; Xu, L. Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2820–2827. [Google Scholar] [CrossRef]
- Graef, J.R.; Kong, L.; Wang, M. Existence and uniqueness of solutions for a fractional boundary value problem on a graph. Fract. Calc. Appl. Anal. 2014, 17, 499–510. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liu, S.; Zhang, L. Eigenvalue problem for nonlinear fractional differential equations with integral boundary conditions. Abstr. Appl. Anal. 2014, 2014, 916260. [Google Scholar] [CrossRef]
- Henderson, J.; Kosmatov, N. Eigenvalue comparison for fractional boundary value problems with the Caputo derivative. Fract. Calc. Appl. Anal. 2014, 17, 872–880. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ahmad, B.; Wang, G. Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half line. Bull. Aust. Math. Soc. 2015, 91, 116–128. [Google Scholar] [CrossRef]
- Henderson, J.; Luca, R. Nonexistence of positive solutions for a system of coupled fractional boundary value problems. Bound. Value Probl. 2015, 2015, 138. [Google Scholar] [CrossRef] [Green Version]
- Ntouyas, S.K.; Etemad, S. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions. Appl. Math. Comput. 2015, 266, 235–243. [Google Scholar] [CrossRef]
- Mei, Z.D.; Peng, J.G.; Gao, J.H. Existence and uniqueness of solutions for nonlinear general fractional differential equations in Banach spaces. Indag. Math. 2015, 26, 669–678. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K. Existence results for fractional differential inclusions with Erdelyi-Kober fractional integral conditions. Analele Universitatii Ovidius Constanta-Seria Matematica 2017, 25, 5–24. [Google Scholar] [CrossRef]
- Srivastava, H.M. Remarks on some families of fractional-order differential equations. Integr. Transf. Spec. Funct. 2017, 28, 560–564. [Google Scholar] [CrossRef]
- Wang, G.; Pei, K.; Agarwal, R.P.; Zhang, L.; Ahmad, B. Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 2018, 343, 230–239. [Google Scholar] [CrossRef]
- Ahmad, B.; Luca, R. Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions. Appl. Math. Comput. 2018, 339, 516–534. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Zhong, H.; Zhang, J.; Belic, M.R.; Zhang, Y. Resonant mode conversions and Rabi oscillations in a fractional Schrödinger equation. Opt. Express 2017, 25, 32401. [Google Scholar] [CrossRef]
- Sun, J.X. Nonlinear Functional Analysis and Its Application; Science Press: Bejing, China, 2018. [Google Scholar]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Uspekhi Matematicheskikh Nauk 1955, 10, 123–127. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, B.; Alruwaily, Y.; Alsaedi, A.; K. Ntouyas, S. Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions. Mathematics 2019, 7, 249. https://doi.org/10.3390/math7030249
Ahmad B, Alruwaily Y, Alsaedi A, K. Ntouyas S. Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions. Mathematics. 2019; 7(3):249. https://doi.org/10.3390/math7030249
Chicago/Turabian StyleAhmad, Bashir, Ymnah Alruwaily, Ahmed Alsaedi, and Sotiris K. Ntouyas. 2019. "Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions" Mathematics 7, no. 3: 249. https://doi.org/10.3390/math7030249
APA StyleAhmad, B., Alruwaily, Y., Alsaedi, A., & K. Ntouyas, S. (2019). Existence and Stability Results for a Fractional Order Differential Equation with Non-Conjugate Riemann-Stieltjes Integro-Multipoint Boundary Conditions. Mathematics, 7(3), 249. https://doi.org/10.3390/math7030249