The Generalized Quadratic Gauss Sum and Its Fourth Power Mean
Abstract
:1. Introduction
2. Several Simple Lemmas
3. Proofs of the Theorems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, W.P.; Hu, J.Y. The number of solutions of the diagonal cubic congruence equation modp. Math. Rep. 2018, 20, 73–80. [Google Scholar]
- Chen, L. On the classical Gauss sums and their some properties. Symmetry 2018, 10, 625. [Google Scholar] [CrossRef]
- Wang, T.T.; Chen, G.H. A note on the classical Gauss sums. Mathematics 2018, 6, 313. [Google Scholar] [CrossRef]
- Zhang, W.P. Moments of Generalized Quadratic Gauss Sums Weighted by L-functions. J. Number Theory 2002, 92, 304–314. [Google Scholar]
- Chen, Z.Y.; Zhang, W.P. On the fourth-order linear recurrence formula related to classical Gauss sums. Open Math. 2017, 15, 1251–1255. [Google Scholar]
- Berndt, B.C.; Evans, R.J. The determination of Gauss sums. Bull. Am. Math. Soc. 1981, 5, 107–128. [Google Scholar] [CrossRef]
- Bai, H.; Hu, J.Y. On the classical Gauss sum and the recursive properties. Adv. Differ. Equ. 2018, 2018, 387. [Google Scholar] [CrossRef]
- Shen, S.M.; Zhang, W.P. On the quartic Gauss sums and their recurrence property. Adv. Differ. Equ. 2017, 2017, 43. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.Y. A linear Recurrence Formula Involving Cubic Gauss Sums and Kloosterman Sums. Acta Math. Sin. 2018, 61, 67–72. [Google Scholar]
- Chowla, S.; Cowles, J.; Cowles, M. On the number of zeros of diagonal cubic forms. J. Number Theory 1977, 9, 502–506. [Google Scholar] [CrossRef]
- Berndt, B.C.; Evans, R.J. Sums of Gauss, Jacobi, and Jacobsthal. J. Number Theory 1979, 11, 349–389. [Google Scholar] [CrossRef]
- Zhang, W.P.; Yi, Y. On Dirichlet characters of polynomials. Bull. London Math. Soc. 2002, 34, 469–473. [Google Scholar]
- Zhang, W.P.; Yao, W.L. A note on the Dirichlet characters of polynomials. Acta Arith. 2004, 115, 225–229. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, W.P. The fourth power mean of two-term exponential sums and its application. Math. Rep. 2017, 19, 75–83. [Google Scholar]
- Bourgain, J.; Garaev, M.Z.; Konyagin, S.V.; Shparlinski, I.E. On the hidden shifted power problem. SIAM J. Comput. 2012, 41, 1524–1557. [Google Scholar] [CrossRef]
- Zhang, W.P.; Liu, H.N. On the general Gauss sums and their fourth power mean. Osaka J. Math. 2005, 42, 189–199. [Google Scholar]
- Weil, A. On some exponential sums. Proc. Natl. Acad. Sci. USA 1948, 34, 204–207. [Google Scholar] [CrossRef]
- Hua, L.K. Introduction to Number Theory; Science Press: Beijing, China, 1979. [Google Scholar]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, S.; Zhang, W. The Generalized Quadratic Gauss Sum and Its Fourth Power Mean. Mathematics 2019, 7, 258. https://doi.org/10.3390/math7030258
Shen S, Zhang W. The Generalized Quadratic Gauss Sum and Its Fourth Power Mean. Mathematics. 2019; 7(3):258. https://doi.org/10.3390/math7030258
Chicago/Turabian StyleShen, Shimeng, and Wenpeng Zhang. 2019. "The Generalized Quadratic Gauss Sum and Its Fourth Power Mean" Mathematics 7, no. 3: 258. https://doi.org/10.3390/math7030258
APA StyleShen, S., & Zhang, W. (2019). The Generalized Quadratic Gauss Sum and Its Fourth Power Mean. Mathematics, 7(3), 258. https://doi.org/10.3390/math7030258