Certain Chebyshev-Type Inequalities Involving Fractional Conformable Integral Operators
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley-Interscience: Bellingham, DC, USA, 1993. [Google Scholar]
- Hristov, J. Approximate solutions to fractional subdiffusion equations. Eur. Phys. J. Spec. Top. 2011, 193, 229–243. [Google Scholar] [CrossRef]
- dos Santos, M.A. Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting. Physics 2019, 1, 40–58. [Google Scholar] [CrossRef]
- Fernandez, A.; Baleanu, D.; Srivastava, H.M. Series representations for fractional-calculus operators involving generalised Mittag-Leffler functions. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 517–527. [Google Scholar] [CrossRef]
- Hilfer, R.; Luchko, Y. Desiderata for Fractional Derivatives and Integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef]
- Almeida, R.; Tavares, D.; Torres, D.F. The Variable-Order Fractional Calculus Of Variations; SpringerBriefs in Applied Sciences and Technology, Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Araci, S.; Rahman, G.; Ghaffar, A.; Nisar, K.S. Fractional Calculus of Extended Mittag-Leffler Function and Its Applications to Statistical Distribution. Mathematics 2019, 7, 248. [Google Scholar] [CrossRef]
- Huang, C.-J.; Rahman, G.; Nisar, K.S.; Ghaffar, A.; Qi, F. Some Inequalities of the Hermite-Hadamard Type for k-Fractional Conformable Integrals. Aust. J. Math. Anal. Appl. 2019, 16, 1–9. [Google Scholar]
- Sontakke, B.; Shaikh, A.; Nisar, K.S. Existence and uniqueness of integrable solutions of fractional order initial value equations. J. Math. Model. 2018, 6, 137–148. [Google Scholar]
- Chebyshev, P.L. Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites. Proc. Math. Soc. Charkov 1882, 2, 93–98. [Google Scholar]
- Anastassiou, G.; Hooshmandasl, M.R.; Ghasemi, A.; Moftakharzadeh, F. Montgomery identities for fractional integrals and related fractional inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 1–16. [Google Scholar]
- Belarbi, S.; Dahmani, Z. On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 2009, 10, 1–5. [Google Scholar]
- Baleanu, D.; Purohit, S.D.; Agarwal, P. On fractional integral inequalities involving hypergeometric operators. Chin. J. Math. 2014, 2014, 609476. [Google Scholar] [CrossRef]
- Dahmani, Z.; Tabharit, L.; Taf, S. New inequalities via Riemann–Liouville fractional integration. J. Adv. Res. Sci. Comput. 2010, 2, 40–45. [Google Scholar]
- Dragomir, S.S. Some integral inequalities of Gruss type. Indian J. Pure Appl. Math. 2002, 31, 397–415. [Google Scholar]
- Dahmani, Z. The Riemann–Liouville Operator to Generate Some New Inequalities. Int. J. Nonlinear Sci. 2011, 12, 452–455. [Google Scholar]
- Cerone, P.; Dragomir, S.S. A refinement of the Gruss inequality and applications. Tamkang J. Math. 2007, 38, 37–49. [Google Scholar]
- Dragomir, S.S. A generalization of Gruss’s inequality in inner product spaces and applications. J. Math. Anal. Appl. 1999, 237, 74–82. [Google Scholar] [CrossRef]
- Mitrinovic, D.S.; Pecaric, J.E.; Fink, A.M. Classical and new inequalities in Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Mercer, M.A. An improvement of the Gruss inequality. J. Inequal. Pure Appl. Math. 2005, 6, 1–4. [Google Scholar]
- Mercer, M.A.; Mercer, P. New proofs of the Gruss inequality. Aust. J. Math. Anal. Appl. 2004, 1, 12. [Google Scholar]
- Niculescu, C.P.; Persson, L.E. Convex Functions And Their Applications; A Contemporary Approach, CMS Books in Mathematics; Springer: New York, NY, USA, 2006; Volume 23. [Google Scholar]
- Pachpatte, B.G. On multidimensional Gruss type integral inequalities. J. Inequal. Pure Appl. Math. 2002, 3, 1–15. [Google Scholar]
- Sarikaya, M.Z.; Aktan, N.; Yildirim, H. On weighted Chebyshev-Gruss like inequalities on time scales. J. Math. Ineq. 2008, 2, 185–195. [Google Scholar] [CrossRef]
- Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 2017, 1–16. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Dahmani, Z. New inequalities for a class of differentiable functions. Int. J. Nonlinear Anal. Appl. 2011, 2, 19–23. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Springer: Wien, Austria, 1997; pp. 223–276. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherlands; London, UK; New York, NY, USA, 2012. [Google Scholar]
- Set, E.; Mumcu, İ.; Özdemir, M.E. Grüss type inequalities involving new conformable fractional integral operators. AIP Conf. Proc. 2018, 1991, 020020. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, G.; Ullah, Z.; Khan, A.; Set, E.; Nisar, K.S. Certain Chebyshev-Type Inequalities Involving Fractional Conformable Integral Operators. Mathematics 2019, 7, 364. https://doi.org/10.3390/math7040364
Rahman G, Ullah Z, Khan A, Set E, Nisar KS. Certain Chebyshev-Type Inequalities Involving Fractional Conformable Integral Operators. Mathematics. 2019; 7(4):364. https://doi.org/10.3390/math7040364
Chicago/Turabian StyleRahman, Gauhar, Zafar Ullah, Aftab Khan, Erhan Set, and Kottakkaran Sooppy Nisar. 2019. "Certain Chebyshev-Type Inequalities Involving Fractional Conformable Integral Operators" Mathematics 7, no. 4: 364. https://doi.org/10.3390/math7040364
APA StyleRahman, G., Ullah, Z., Khan, A., Set, E., & Nisar, K. S. (2019). Certain Chebyshev-Type Inequalities Involving Fractional Conformable Integral Operators. Mathematics, 7(4), 364. https://doi.org/10.3390/math7040364