Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function: Reply to Discussion
Abstract
:1. Introduction
2. Typographical Corrections
3. Observations Related to the Discussion [2]
4. Colebrook Equation Expressed through the Wright ω-Function
5. A New Updated Explicit Approximation
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
Variables | |
variable that depends on and (dimensionless) | |
variable that depends on (dimensionless) | |
variable that depends on variables and (dimensionless) | |
real constant (dimensionless) | |
Darcy (Moody) flow friction factor (dimensionless) | |
Reynolds number (dimensionless) | |
variable that depends on R (dimensionless) | |
variable in function on R and (dimensionless) | |
variable in function on (dimensionless) | |
relative roughness of inner pipe surface (dimensionless) | |
relative error (%) | |
Functions | |
natural logarithm | |
Padé approximant | |
Lambert -function | |
Wright ω-function |
References
- Brkić, D.; Praks, P. Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function. Mathematics 2019, 7, 34. [Google Scholar] [CrossRef]
- Zeghadnia, L.; Achour, B.; Robert, J.L. Discussion of “Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function” by Dejan Brkić; and Pavel Praks, Mathematics 2019, 7, 34; doi:10.3390/math7010034. Mathematics 2019, 7, 253. [Google Scholar] [CrossRef]
- Sobol’, I.M.; Turchaninov, V.I.; Levitan; Yu, L.; Shukhman, B.V. Quasi-Random Sequence Generators. Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow. Distributed by OECD/NEA Data Bank. 1991. Available online: http://www.oecd-nea.org/tools/abstract (accessed on 23 April 2019).
- Colebrook, C.F.; White, C.M. Experiments with Fluid Friction in Roughened Pipes. Proc. R. Soc. A Math. Phys. Eng. Sci. 1937, 161, 367–381. [Google Scholar] [CrossRef]
- Colebrook, C.F. Turbulent Flow in Pipes with Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws. J. Inst. Civ. Eng. (Lond.) 1939, 11, 133–156. [Google Scholar] [CrossRef]
- Brkić, D. Review of Explicit Approximations to the Colebrook Relation for Flow Friction. J. Pet. Sci. Eng. 2011, 77, 34–48. [Google Scholar] [CrossRef]
- Praks, P.; Brkić, D. One-Log Call Iterative Solution of the Colebrook Equation for Flow Friction Based on Padé Polynomials. Energies 2018, 11, 1825. [Google Scholar] [CrossRef]
- Zeghadnia, L.; Robert, J.L.; Achour, B. Explicit Solutions for Turbulent Flow Friction Factor: A Review, Assessment and Approaches Classification. Ain Shams Eng. J. 2019, 10, 243–252. [Google Scholar] [CrossRef]
- Serghides, T.K. Estimate Friction Factor Accurately. Chem. Eng. (N. Y.) 1984, 91, 63–64. [Google Scholar]
- Buzzelli, D. Calculating Friction in One Step. Mach. Des. 2008, 80, 54–55. Available online: https://www.machinedesign.com/archive/calculating-friction-one-step (accessed on 29 October 2018).
- Brkić, D. Determining friction factors in turbulent pipe flow. Chem. Eng. (N. Y.) 2012, 119, 34–39. Available online: https://www.chemengonline.com/determining-friction-factors-in-turbulent-pipe-flow/?printmode=1 (accessed on 19 April 2019).
- Ćojbašić, Ž.; Brkić, D. Very Accurate Explicit Approximations for Calculation of the Colebrook Friction Factor. Int. J. Mech. Sci. 2013, 67, 10–13. [Google Scholar] [CrossRef]
- Brkić, D.; Ćojbašić, Ž. Evolutionary Optimization of Colebrook’s Turbulent Flow Friction Approximations. Fluids 2017, 2, 15. [Google Scholar] [CrossRef]
- Winning, H.K.; Coole, T. Improved Method of Determining Friction Factor in Pipes. Int. J. Numer. Methods Heat Fluid Flow 2015, 25, 941–949. [Google Scholar] [CrossRef]
- Winning, H.K.; Coole, T. Explicit Friction Factor Accuracy and Computational Efficiency for Turbulent Flow in Pipes. Flow Turbul. Combust. 2013, 90, 1–27. [Google Scholar] [CrossRef]
- Pimenta, B.D.; Robaina, A.D.; Peiter, M.X.; Mezzomo, W.; Kirchner, J.H.; Ben, L.H.B. Performance of Explicit Approximations of the Coefficient of Head Loss for Pressurized Conduits. Rev. Bras. Eng. Agríc. Ambient. 2018, 22, 301–307. [Google Scholar] [CrossRef]
- Vatankhah, A.R. Approximate Analytical Solutions for the Colebrook Equation. J. Hydraul. Eng. 2018, 144, 06018007. [Google Scholar] [CrossRef]
- Praks, P.; Brkić, D. Symbolic Regression Based Genetic Approximations of the Colebrook Equation for Flow Friction. Water 2018, 10, 1175. [Google Scholar] [CrossRef]
- Praks, P.; Brkić, D. Advanced Iterative Procedures for Solving the Implicit Colebrook Equation for Fluid Flow Friction. Adv. Civ. Eng. 2018, 2018, 5451034. [Google Scholar] [CrossRef]
- Praks, P.; Brkić, D. Choosing the Optimal Multi-Point Iterative Method for the Colebrook Flow Friction Equation. Processes 2018, 6, 130. [Google Scholar] [CrossRef]
- Horchler, A.D. WrightOmegaq: Complex Double-Precision Evaluation of the Wright Omega Function, a Solution of W+LOG(W)=Z. Version 1.0, 3-12-13. Available online: https://github.com/horchler/wrightOmegaq (accessed on 23 April 2019).
- Brkić, D. Lambert W Function in Hydraulic Problems. Math. Balk. 2012, 26, 285–292. Available online: http://www.math.bas.bg/infres/MathBalk/MB-26/MB-26-285-292.pdf (accessed on 29 March 2019).
- Santos-Ruiz, I.; Bermúdez, J.R.; López-Estrada, F.R.; Puig, V.; Torres, L. Estimación Experimental De La Rugosidad Y Del Factor De Fricción En Una Tubería. Memorias Del Congreso Nacional De Control Automático, San Luis Potosí, San Luis Potosí, México, 10–12 de Octubre de 2018. Available online: https://www.researchgate.net/publication/328332798 (accessed on 19 April 2019). (In Spanish).
- Olivares, A.; Guerra, R.; Alfaro, M.; Notte-Cuello, E.; Puentes, L. Experimental Evaluation of Correlations Used to Calculate Friction Factor for Turbulent Flow in Cylindrical Pipes. Rev. Int. Métodos Numér. Cálc. Diseño Ing. 2019, 35, 15. [Google Scholar] [CrossRef]
- More, A.A. Analytical Solutions for the Colebrook and White Equation and for Pressure Drop in Ideal Gas Flow in Pipes. Chem. Eng. Sci. 2006, 61, 5515–5519. [Google Scholar] [CrossRef]
- Biberg, D. Fast and Accurate Approximations for the Colebrook Equation. J. Fluids Eng. 2017, 139, 031401. [Google Scholar] [CrossRef]
- Brkić, D. Solution of the Implicit Colebrook Equation for Flow Friction Using Excel. Spreadsheets Educ. 2017, 10, 2. Available online: https://sie.scholasticahq.com/article/4663 (accessed on 3 May 2019).
- Olivares Gallardo, A.P.; Guerra Rojas, R.A.; Alfaro Guerra, M.A. Evaluación Experimental De La Solución Analítica Exacta De La Ecuación De Colebrook-White. Ing. Investig. Y Tecnol. 2019, 20, 1–11. (In Spanish) [Google Scholar] [CrossRef]
- Brkić, D. A Note on Explicit Approximations to Colebrook’s Friction Factor in Rough Pipes Under Highly Turbulent Cases. Int. J. Heat Mass Transf. 2016, 93, 513–515. [Google Scholar] [CrossRef]
- Vazquez-Leal, H.; Sandoval-Hernandez, M.A.; Garcia-Gervacio, J.L.; Herrera-May, A.L.; Filobello-Nino, U.A. PSEM Approximations for Both Branches of Lambert Function with Applications. Discret. Dyn. Nat. Soc. 2019, 2019, 8267951. [Google Scholar] [CrossRef]
- Brkić, D.; Praks, P. Short Overview of Early Developments of the Hardy Cross Type Methods for Computation of Flow Distribution in Pipe Networks. Appl. Sci. 2019, in press. [Google Scholar]
- Kassai, M.; Poleczky, L.; Al-Hyari, L.; Kajtar, L.; Nyers, J. Investigation of the Energy Recovery Potentials in Ventilation Systems in Different Climates. Facta Univ. Ser. Mech. Eng. 2018, 16, 203–217. [Google Scholar] [CrossRef]
- Brkić, D.; Praks, P. An Efficient Iterative Method for Looped Pipe Network Hydraulics Free of Flow-Corrections. Fluids 2019, 4, 73. [Google Scholar] [CrossRef]
- Biagi, M.; Carnevali, L.; Tarani, F.; Vicario, E. Model-Based Quantitative Evaluation of Repair Procedures in Gas Distribution Networks. ACM Trans. Cyber-Phys. Syst. 2018, 3, 1–26. [Google Scholar] [CrossRef]
- Brkić, D. Spreadsheet-Based Pipe Networks Analysis for Teaching and Learning Purpose. Spreadsheets Educ. 2016, 9, 4. Available online: https://sie.scholasticahq.com/article/4646.pdf (accessed on 3 May 2019).
Approximation | δ% | Eq. | |
---|---|---|---|
0.136% | (4) | ||
, , , and δ% = (ǀfaccurate − fǀ/faccurate)·100%; is the Reynolds number while is the relative roughness of the inner pipe surface, both dimensionless, while δ% denotes the percentage relative error (here evaluated in Matlab using more than 2 million of quasi Monte-Carlo samples) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brkić, D.; Praks, P. Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function: Reply to Discussion. Mathematics 2019, 7, 410. https://doi.org/10.3390/math7050410
Brkić D, Praks P. Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function: Reply to Discussion. Mathematics. 2019; 7(5):410. https://doi.org/10.3390/math7050410
Chicago/Turabian StyleBrkić, Dejan, and Pavel Praks. 2019. "Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function: Reply to Discussion" Mathematics 7, no. 5: 410. https://doi.org/10.3390/math7050410
APA StyleBrkić, D., & Praks, P. (2019). Accurate and Efficient Explicit Approximations of the Colebrook Flow Friction Equation Based on the Wright ω-Function: Reply to Discussion. Mathematics, 7(5), 410. https://doi.org/10.3390/math7050410