Boundary Value Problems for Hybrid Caputo Fractional Differential Equations
Abstract
:1. Introduction
2. Preliminaries
- (1)
- The family is non-empty and .
- (2)
- .
- (3)
- .
- (4)
- for .
- (5)
- If is a sequence of closed subsets of such that and , then .
3. Proof of Main Results
- (H1)
- The functions are continuous.
- (H2)
- and .
- (H3)
- There exists a constant such that
- (H4)
- There exists a continuous nondecreasing function such that
- (H5)
- There exists such that
4. An Example
Author Contributions
Funding
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Samko, G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivative; Theory and Applications; Gordon and Breach: Philadelphia, PA, USA, 1993. [Google Scholar]
- Abbas, S.; Benchohra, M.; Graef, J.; Henderson, J. Implicit FractionalDifferential and Integral Equations; Existence and Stability; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Abbas, S.; Benchohra, M.; N’Guérékata, G.M. Topics in Fractional Differential Equations; Springer: New York, NY, USA, 2012. [Google Scholar]
- Abbas, S.; Benchohra, M.; N’Guérékata, G.M. Advanced Fractional Differential and Integral Equations; Nova Science Publishers: New York, NY, USA, 2015. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zhou, Y. Attractivity for fractional differential equations in Banach space. Appl. Math. Lett. 2018, 75, 1–6. [Google Scholar] [CrossRef]
- Zhou, Y. Attractivity for fractional evolution equations with almost sectorial operators. Fract. Calc. Appl. Anal. 2018, 21, 786–800. [Google Scholar] [CrossRef]
- Zhou, Y.; Ahmad, B.; Alsaedi, A. Existence of nonoscillatory solutions for fractional neutral differential equations. Appl. Math. Lett. 2017, 72, 70–74. [Google Scholar] [CrossRef]
- Zhou, Y.; Shangerganesh, L.; Manimaran, J.; Debbouche, A. A class of time-fractional reaction-diffusion equation with nonlocal boundary condition. Math. Methods Appl. Sci. 2018, 41, 2987–2999. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Benchohra, M.; Hamani, S. A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 2010, 109, 973–1033. [Google Scholar] [CrossRef]
- Bai, Z.; Lu, H. Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 2005, 311, 495–505. [Google Scholar] [CrossRef]
- Benchohra, M.; Hamani, S.; Ntouyas, S.K. Boundary value problems for differential equations with fractional order. Surv. Math. Appl. 2008, 3, 1–12. [Google Scholar]
- Ford, N.; Morgado, M. Fractional boundary value problems: Analysis and numerical methods. Fract. Calc. Appl. Anal. 2011, 14, 554–567. [Google Scholar] [CrossRef]
- Plociniczak, L. Eigenvalue asymptotics for a fractional boundary-value problem. Appl. Math. Comput. 2014, 241, 125–128. [Google Scholar] [CrossRef]
- Plociniczak, L. On asymptotics of some fractional differential equations. Math. Model. Anal. 2013, 18, 358–373. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, D. Multiple Positive Solutions for the Boundary Value Problem of a Nonlinear Fractional Differential Equation; Northeast Normal University: Changchun, China, 2009. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal boundary value problems for hybrid fractional differential equations and inclusions of Hadamard type. Fract. Differ. Calc. 2015, 5, 107–123. [Google Scholar] [CrossRef]
- Ahmad, B.; Ntouyas, S.K.; Tariboon, J. A nonlocal hybrid boundaryvalue problem of Caputo fractional integro-differential equations. Acta Math. Sci. 2016, 36, 1631–1640. [Google Scholar] [CrossRef]
- Darwish, M.A.; Sadarngani, K. Existence of solutions for hybrid fractional pantograph equations. App. Anal. Discret. Math. 2015, 9, 150–167. [Google Scholar] [CrossRef]
- Dhage, B.C.; Lakshmikantham, V. Basic results on hybrid differential equations. Nonlinear Anal. Hybrid Syst. 2010, 4, 414–424. [Google Scholar] [CrossRef]
- Herzallah, A.E.M.; Baleanu, D. On fractional order hybrid differential equations. Abstr. Appl. Anal. 2014, 2014, 389386. [Google Scholar] [CrossRef]
- Hilal, K.; Kajouni, A. Boundary value problems for hybrid differential equations with fractional order. Adv. Differ. Equ. 2015, 2015, 183. [Google Scholar] [CrossRef]
- Karimov, E.T.; Lopez, B.; Sadarngani, K. About the existence of solutions for a hybrid ninlinear generalized pantograph equation. Fract. Differ. Calc. 2016, 6, 95–110. [Google Scholar] [CrossRef]
- Mahmudov, N.; Matar, M. Existence of mild solutions for hybrid differential equations with arbitrary fractional order. TWMS J. Pure Appl. Math. 2017, 8, 160–169. [Google Scholar]
- Sitho, S.; Ntouyas, S.K.; Tariboon, J. Existence results for hybrid fractional integro-differential equations. Bound. Value Probl. 2015, 2015, 113. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, Y.; Han, Z.; Li, Y. The existence of solutions for boundary value problem offractional hybrid differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4961–4967. [Google Scholar] [CrossRef]
- Ullah, Z.; Ali, A.; Khan, R.A.; Iqbal, M. Existence results to a class of hybrid fractional differential equations. Matriks Sains Mat. 2018, 1, 13–17. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y. Existence of solutions to boundary value problem of a class of nonlinear fractional differential equations. Adv. Differ. Equ. 2014, 2014, 174. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, S.; Han, Z.; Li, Q. Theory of fractional hybrid differential equations. Comput. Math. Appl. 2011, 62, 1312–1324. [Google Scholar] [CrossRef]
- Banas, J.; Goebel, K. Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1980. [Google Scholar]
- Darbo, G. Punti uniti in transformazioni a codominio noncompatto. Rend. Semin. Mat. Univ. Padova 1955, 24, 84–92. [Google Scholar]
- Jleli, M.; Karapinar, E.; O’regan, D.; Samet, B. Some generalizations of Darbo’s theorem and applications to fractional integral equations. Fixed Point Theory Appl. 2016, 2016, 11. [Google Scholar] [CrossRef]
- Banas, J.; Goebel, K. On a class of measures of noncompactness in Banach algebras and their application to nonlinear integral equations. J. Anal. Appl. 2009, 28, 475–498. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baitiche, Z.; Guerbati, K.; Benchohra, M.; Zhou, Y. Boundary Value Problems for Hybrid Caputo Fractional Differential Equations. Mathematics 2019, 7, 282. https://doi.org/10.3390/math7030282
Baitiche Z, Guerbati K, Benchohra M, Zhou Y. Boundary Value Problems for Hybrid Caputo Fractional Differential Equations. Mathematics. 2019; 7(3):282. https://doi.org/10.3390/math7030282
Chicago/Turabian StyleBaitiche, Zidane, Kaddour Guerbati, Mouffak Benchohra, and Yong Zhou. 2019. "Boundary Value Problems for Hybrid Caputo Fractional Differential Equations" Mathematics 7, no. 3: 282. https://doi.org/10.3390/math7030282
APA StyleBaitiche, Z., Guerbati, K., Benchohra, M., & Zhou, Y. (2019). Boundary Value Problems for Hybrid Caputo Fractional Differential Equations. Mathematics, 7(3), 282. https://doi.org/10.3390/math7030282