Topology Structure Implied in β-Hilbert Space, Heisenberg Uncertainty Quantum Characteristics and Numerical Simulation of the DE Algorithm
Abstract
:1. Introduction
2. Preparatory Knowledge
2.1. Basic Steps of the Algorithm
2.1.1. Initial Population
2.1.2. Mutation Operation
2.1.3. Crossover Operation
2.1.4. Selection Operation
2.1.5. Compact Operator and Space
3. Continuity Structure of Closed Populations and Convergence of Iterative Sequences under
3.1. Continuity Structure of the Closed Population Feature Quantity in Perturbation
3.2. Uniform Convergence of the Differential Equation in Perturbation
4. Topological Structure Implied in Space of the Algorithm
4.1. Single-Point Topological Structure of Closed Populations in Space
4.2. Branch Topological Structure of Closed Populations in Space
4.3. Discrete Topological Structure of Closed Populations in Space
5. Quantum Characteristics of the Uncertainty Principle in -Hilbert Space
6. Numerical Simulation
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Storn, R.; Price, K. Differential Evolution—A Simple and Effcient Heuristic for global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Price, K.; Price, K. Differential Evolution—A Simple and Effcient Heuristic for Global Optimization over Continuous Spaces; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Reddy, S.S.; Bijwe, P.R. Differential evolution-based efficient multi-objective optimal power flow. Neural Comput. Appl. 2017, 1–14. [Google Scholar] [CrossRef]
- Liu, J.; Lampinen, J. A Fuzzy Adaptive Differential Evolution Algorithm. Soft Comput. 2005, 9, 448–462. [Google Scholar] [CrossRef]
- Reddy, S.S.; Bijwe, P.R.; Abhyanka, A.R. Faster evolutionary algorithm based optimal power flow using incremental variables. Int. J. Electr. Power Energy Syst. 2014, 54, 198–210. [Google Scholar] [CrossRef]
- Reddy, S.S. Optimal power flow using hybrid differential evolution and harmony search algorithm. Int. J. Mach. Learn. Cybern. 2018, 1–15. [Google Scholar] [CrossRef]
- Reddy, S.S.; Abhyankar, A.R.; Bijwe, P.R. Reactive power price clearing using multi-objective optimization. Energy 2011, 36, 3579–3589. [Google Scholar] [CrossRef]
- Ilonen, J.; Kamarainen, J.K.; Lampinen, J. Differential Evolution Training Algorithm for Feed-Forward Neural Networks. Neural Process. Lett. 2003, 17, 93–105. [Google Scholar] [CrossRef]
- Storn, R. System design by constraint adaptation and differential evolution. IEEE Trans. Evol. Comput. 1999, 3, 22–34. [Google Scholar] [CrossRef]
- Reddy, S.S.; Panigrahi, B.K. Optimal power flow using clustered adaptive teaching learning-based optimisation. Int. J. Bio-Inspir. Comput. 2017, 9, 226. [Google Scholar] [CrossRef]
- Yang, M.; Li, C.; Cai, Z.; Guan, J. Differential Evolution With Auto-Enhanced Population Diversity. IEEE Trans. Cybern. 2017, 45, 302–315. [Google Scholar] [CrossRef]
- Eschenauer, H.A.; Olhoff, N. Topology optimization of continuum structures: A review. Appl. Mech. Rev. 2001, 54, 1453–1457. [Google Scholar] [CrossRef]
- Albert, R.; Barabasi, A.L. Topology of evolving networks: Local events and universality. Phys. Rev. Lett. 2000, 85, 5234. [Google Scholar] [CrossRef] [PubMed]
- Berkson, E. Composition operators isolated in the uniform operator topology. Proc. Am. Math. Soc. 1981, 81, 230–232. [Google Scholar] [CrossRef]
- Maccluer, B.D. Components in the space of composition operators. Integr. Equ. Oper. Theory 1989, 12, 725–738. [Google Scholar] [CrossRef]
- Shapiro, J.H.; Sundberg, C. Isolation amongst the composition operators. Pac. J. Math. 1990, 145, 179–185. [Google Scholar] [CrossRef]
- Maccler, B.; Ohno, S.; Zhao, R. Topological structure of the space of composition operators on Hilbert. Integr. Equ. Oper. Theory 2001, 40, 481–494. [Google Scholar] [CrossRef]
- Hosokawa, T.; Izuchi, K.; Zheng, D. Isolated points and essential components of composition operators on Hilbert. Integr. Equ. Oper. Theory 2001, 130, 1765–1773. [Google Scholar]
- Zhu, K. Uncertainty principles for the Fock space. Sci. China-Math. 2015, 45, 1847–1854. [Google Scholar]
- Accardi, L.; Marek, B. Interacting Fock Spaces and Gaussianization of Probability Measures. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2014, 1, 9800036. [Google Scholar] [CrossRef]
- Cho, H.R.; Zhu, K. Fock-Sobolev spaces and their Carleson measures. J. Funct. Anal. 2012, 263, 2483–2506. [Google Scholar] [CrossRef]
- Popescu, G. Multi-analytic operators on Fock spaces. Math. Ann. 1995, 303, 31–46. [Google Scholar] [CrossRef]
- Wang, X.; Cao, G.; Zhu, K. Boundedness and compactness of operators on the Fock space. Integr. Equ. Oper. Theory 2013, 77, 355–370. [Google Scholar] [CrossRef]
- Gooch, J.W. Heisenberg Uncertainty Principle; Springer: New York, NY, USA, 2011. [Google Scholar]
- Folland, G.B.; Sitaram, A. The uncertainty principle: A mathematical survey. J. Fourier Anal. Appl. 1997, 3, 207–238. [Google Scholar] [CrossRef]
- Faris, W.G. Inequalities and uncertainty principles. J. Math. Phys. 1978, 19, 461–466. [Google Scholar] [CrossRef]
- Donoho, D.L.; Stark, P.B. Uncertainty principles and signal recovery. Siam J. Appl. Math. 1989, 49, 906–931. [Google Scholar] [CrossRef]
- Il’In, A.M. Differencing scheme for a differential equation with a small parameter affecting the highest derivative. Math. Notes Acad. Sci. Ussr 1969, 6, 596–602. [Google Scholar] [CrossRef]
- Dorr, F.W.; Parter, S.V.; Shampine, L.F. Applications of the Maximum Principle to Singular Perturbation Problems. Siam Rev. 1973, 15, 43–88. [Google Scholar] [CrossRef]
- Conway, J.B. A course in functional analysis. Math. Gazette 1990, 75, 698. [Google Scholar]
- Dai, J. Topological Components of the Space of Composition Operators on Fock Spaces. Complex Anal. Oper. Theory 2015, 9, 201–212. [Google Scholar] [CrossRef]
- Hong, R.C.; Choe, B.R.; Koo, H. Linear Combinations of Composition Operators on the Fock-Sobolev Spaces. Potential Anal. 2014, 41, 1223–1246. [Google Scholar]
- Moshinsky, M.; Quesne, C. Linear Canonical Transformations and Their Unitary Representations. J. Math. Phys. 1971, 12, 1772–1780. [Google Scholar] [CrossRef]
- Zhao, J.; Tao, R.; Wang, Y. On signal moments and uncertainty relations associated with linear canonical transform. Signal Process. 2010, 90, 2686–2689. [Google Scholar] [CrossRef]
- Cattermole, K.W. The Fourier Transform and Its Applications; Osborne McGraw-Hill: London, UK, 2000. [Google Scholar]
- Simons, J. Minimal Varieties in Riemannian Manifolds. Ann. Math. 1968, 88, 62–105. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Yau, S.T. Differential equations on riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 2010, 28, 333–354. [Google Scholar] [CrossRef]
- Jin, J. The Finite Element Method in Electromagnetics. J. Jpn. Soc. Appl. Electromagn. 2002, 1, 39–40. [Google Scholar]
- Satorra, A.; Bentler, P.M. A scaled difference chi-square test statistic for moment structure analysis. Psychometrika 2001, 66, 507–514. [Google Scholar] [CrossRef]
9.500 | 0.400 | 1 | 6.660 | 0.558 | 1 | 8.214 | 0.325 | 1 | |
9.230 | 0.422 | 1 | 7.242 | 0.500 | 1 | 8.225 | 0.214 | 1 | |
8.471 | 0.500 | 1 | 8.011 | 0.500 | 1 | 9.535 | 0.110 | 1 | |
7.620 | 0.558 | 1 | 9.763 | 0.500 | 1 | 9.774 | 0.012 | 1 | |
6.101 | 0.660 | 1 | 9.763 | 0.500 | 1 | 9.896 | 0.011 | 1 | |
5.310 | 0.793 | 1 | 9.880 | 0.500 | 1 | 9.977 | 0.010 | 1 | |
SV | 2.89009 | 0.02248 | / | 2.05701 | 0.00056 | / | 0.68463 | 0.01727 | / |
PV | 2.40841 | 0.01874 | / | 1.71418 | 0.00047 | / | 0.57052 | 0.01439 | / |
DVR | +0.20 | +0.32 | 1 | +0.34 | +0.19 | 1 | +0.11 | +0.16 | 1 |
EB | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / |
8.687 | 0.793 | 1 | 5.243 | 0.021 | 1 | 8.688 | 0.029 | 1 | |
8.756 | 0.660 | 1 | 7.242 | 0.021 | 1 | 8.744 | 0.025 | 1 | |
8.863 | 0.558 | 1 | 9.011 | 0.020 | 1 | 8.880 | 0.013 | 1 | |
8.880 | 0.500 | 1 | 9.763 | 0.015 | 1 | 8.863 | 0.009 | 1 | |
9.000 | 0.500 | 1 | 9.841 | 0.010 | 1 | 9.010 | 0.005 | 1 | |
9.010 | 0.500 | 1 | 9.865 | 0.010 | 1 | 9.101 | 0.004 | 1 | |
SV | 0.18447 | 0.01426 | / | 3.54164 | 0.00003 | / | 0.02428 | 0.00011 | / |
PV | 0.15373 | 0.01188 | / | 2.95137 | 0.00002 | / | 0.02023 | 0.00009 | / |
DVR | +0.20 | +0.20 | 1 | +0.19 | +0.50 | 1 | +0.20 | +0.22 | 1 |
EB | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / |
(F) | |||||||||
---|---|---|---|---|---|---|---|---|---|
6.786 | 1 | 2.652 | 2.558 | 1 | 11.749 | 0.005 | 1 | ||
6.020 | 1 | 2.641 | 2.560 | 1 | 11.744 | 0.009 | 1 | ||
6.020 | 1 | 2.633 | 2.559 | 1 | 11.126 | 0.010 | 1 | ||
5.852 | 1 | 2.620 | 2.660 | 1 | 9.535 | 0.010 | 1 | ||
5.633 | 1 | 2.619 | 2.676 | 1 | 9.535 | 0.015 | 1 | ||
5.330 | 1 | 2.618 | 2.881 | 1 | 9.535 | 0.055 | 1 | ||
SV | 0.24052 | 0.04688 | / | 0.0002 | 0.0158 | / | 0.02428 | 0.00035 | / |
PV | 0.20043 | 0.03907 | / | 0.00016 | 0.01316 | / | 0.02023 | 0.00029 | / |
DVR | +0.20 | +0.19 | 1 | +0.25 | +0.20 | 1 | +0.20 | +0.20 | 1 |
EB | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / |
() | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.430 | 0.991 | 7.002 | 0.990 | / | 0.000 | ||||
0.520 | 0.853 | 7.242 | 0.960 | / | 0.000 | ||||
0.522 | 0.793 | 7.620 | 0.960 | / | 0.000 | ||||
SV | 0.00276 | 0.01031 | / | 0.09707 | 0.0003 | / | / | 0 | / |
PV | 0.00184 | 0.00687 | / | 0.06471 | 0.0002 | / | / | 0 | / |
DVR | +0.50 | +0.50 | +0.50 | +0.50 | / | 0 | |||
EB | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / | / | ±0.5 | / |
1.233 | 0.099 | 1 | 9.855 | 1 | 11.144 | 0.397 | 1 | ||
1.122 | 0.124 | 1 | 9.676 | 1 | 11.126 | 0.542 | 1 | ||
1.010 | 0.500 | 1 | 9.110 | 1 | 10.250 | 0.633 | 1 | ||
SV | 0.01243 | 0.05047 | / | 0.15124 | 0.08003 | / | 0.26116 | 0.01417 | / |
PV | 0.00829 | 0.03364 | / | 0.10082 | 0.05336 | / | 0.1741 | 0.00944 | / |
DVR | +0.49 | +0.49 | 1 | +0.50 | +0.03 | 1 | +0.50 | +0.20 | 1 |
EB | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / |
(X) | |||||||||
---|---|---|---|---|---|---|---|---|---|
0.523 | 0.796 | 7.002 | 0.081 | / | 0.000 | ||||
0.550 | 0.788 | 7.242 | 0.055 | / | 0.000 | ||||
0.599 | 0.721 | 7.620 | 0.001 | / | 0.000 | ||||
SV | 0.00035 | 0.0017 | / | 0.09707 | 0.00167 | / | / | 0 | / |
PV | 0.00023 | 0.00113 | / | 0.06471 | 0.00111 | / | / | 0 | / |
VDR | +0.52 | +0.50 | +0.50 | +0.50 | / | 0 | |||
EB | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / | / | ±0.5 | / |
0.997 | 0.499 | 1 | 9.855 | 0.723 | 11.144 | 0.551 | |||
0.947 | 0.500 | 1 | 9.676 | 0.956 | 11.126 | 0.640 | |||
0.930 | 0.110 | 1 | 9.110 | 0.990 | 10.250 | 0.688 | |||
SV | 0.00121 | 0.05057 | / | 0.15124 | 0.02112 | / | 0.26116 | 0.00483 | / |
PV | 0.00081 | 0.03371 | / | 0.10082 | 0.01408 | / | 0.1741 | 0.00322 | / |
VDR | +0.49 | +0.50 | 1 | +0.50 | +0.50 | +0.50 | +0.50 | ||
EB | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / | ±0.5 | ±0.5 | / |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Gao, Y. Topology Structure Implied in β-Hilbert Space, Heisenberg Uncertainty Quantum Characteristics and Numerical Simulation of the DE Algorithm. Mathematics 2019, 7, 330. https://doi.org/10.3390/math7040330
Wang K, Gao Y. Topology Structure Implied in β-Hilbert Space, Heisenberg Uncertainty Quantum Characteristics and Numerical Simulation of the DE Algorithm. Mathematics. 2019; 7(4):330. https://doi.org/10.3390/math7040330
Chicago/Turabian StyleWang, Kaiguang, and Yuelin Gao. 2019. "Topology Structure Implied in β-Hilbert Space, Heisenberg Uncertainty Quantum Characteristics and Numerical Simulation of the DE Algorithm" Mathematics 7, no. 4: 330. https://doi.org/10.3390/math7040330
APA StyleWang, K., & Gao, Y. (2019). Topology Structure Implied in β-Hilbert Space, Heisenberg Uncertainty Quantum Characteristics and Numerical Simulation of the DE Algorithm. Mathematics, 7(4), 330. https://doi.org/10.3390/math7040330