Weak Partial b-Metric Spaces and Nadler’s Theorem
Abstract
:1. Introduction
2. Preliminaries
- (WP1)
- (WP2)
- (WP3)
- (WP4)
- (wh1)
- ;
- (wh2)
- ;
- (wh3)
- .
- ∃ such that
- for every , t in and , there exists z in such that
3. Weak Partial -Metric Space
- (WPB1)
- ;
- (WPB2)
- ;
- (WPB3)
- ;
- (WPB4)
- (i)
- , where is defined as
- (ii)
- , where is defined as
- (1)
- A Cauchy sequence in metric space is Cauchy in M.
- (2)
- If the metric space is complete, so is weak partial b-metric space .
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- .
- (i)
- If , then for all , we have as . This implies that .
- (ii)
- Let . Since for all , therefore we have .
- (iii)
- If , then for all . From (i) and (ii), it follows that for all . Hence for all . By Remark 3, we have , so .
- (iv)
- Let and . By (WPB4), we have Since is arbitrary, therefore and so that Since is arbitrary, therefore Since is arbitrary, we have
- (whb1)
- ;
- (whb2)
- ;
- (whb3)
- .
- for every ∃ such that
- for every , t in and , ∃ z in such that
4. Fixed Point Result
- For , we have
- For , we have
- For , we have
- For , we have
- For , we have
- For , we have
- (a)
- If , ∃
- (b)
- If , for , ∃ such that
- (c)
- If , for , ∃ such that
5. Application
- (a)
- is such that is continuous for all and ;
- (b)
- ;
- (c)
- for each , there exist , such that
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | linear dichroism |
References
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces. Math. Slov. 2014, 64, 941–960. [Google Scholar]
- Aleksić, S.; Huang, H.; Mitrović, Z.D.; Radenović, S. Remarks on some fixed point results in b-metric spaces. J. Fixed Point Theory Appl. 2018, 20, 147. [Google Scholar] [CrossRef]
- Ali, M.U.; Kamran, T.; Postolache, M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal. Model. Control 2017, 22, 17–30. [Google Scholar] [CrossRef]
- Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. Topol. Appl. 2012, 159, 3234–3242. [Google Scholar] [CrossRef]
- Beg, I.; Pathak, H.K. A variant of Nadler’s theorem on weak partial metric spaces with application to homotopy result. Vietnam J. Math. 2018, 46, 693–706. [Google Scholar] [CrossRef]
- Boriceanu, M.; Bota, M.; Petrusel, A. Mutivalued fractals in b-metric spaces. Cen. Eur. J. Math. 2010, 8, 367–377. [Google Scholar] [CrossRef]
- Bota, M.; Molnar, A.; Csaba, V. On Ekeland’s variational principle in b-metric spaces. Fixed Point Theory 2011, 12, 21–28. [Google Scholar]
- Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Univ. Mod. 1998, 46, 263–276. [Google Scholar]
- Phiangsungnoen, S.; Kumam, P. On stability of fixed point inclusion for multivalued type contraction mappings in dislocated b-metric spaces with application. Math. Methods Appl. Sci. 2018, 1–14. [Google Scholar] [CrossRef]
- Batsari, U.V.; Kumam, P.; Sitthithakerngkiet, K. Some Globally Stable Fixed Points in b-Metric Spaces. Symmetry 2018, 10, 555. [Google Scholar]
- Huang, H.; Došenović, T.; Radenović, S. Some fixed point results in b-metric spaces approach to the existence of a solution to nonlinear integral equations. J. Fixed Point Theory Appl. 2018, 20, 105. [Google Scholar] [CrossRef]
- Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- Heckmann, R. Approximation of metric spaces by partial metric spaces. Appl. Categ. Struct. 1999, 7, 71–83. [Google Scholar] [CrossRef]
- Jovanović, M.; Kadelburg, Z.; Radenović, S. Common fixed point results in metric type spaces. Fixed Point Theory Appl. 2010, 2010, 978121. [Google Scholar] [CrossRef]
- Kamran, T.; Postolache, M.; Ali, M.U.; Kiran, Q. Feng and Liu type F-contraction in b-metric spaces with application to integral equations. J. Math. Anal. 2016, 7, 18–27. [Google Scholar]
- Khamski, M.A.; Hussain, N. KKM mappings in metric type spaces. Nonlinear Anal. 2010, 73, 3123–3129. [Google Scholar] [CrossRef]
- Nadler, S.B. Multivalued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Patle, P.; Patel, D.; Aydi, H.; Radenović, S. -type multivalued contraction and its applications in symmetric and probabilistic spaces. Mathematics 2019, 7, 144. [Google Scholar] [CrossRef]
- Paunović, L.; Kaushikb, P.; Kumar, S. Some applications with new admissibility contractions in b-metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 4162–4174. [Google Scholar] [CrossRef]
- Shatanawi, W.; Pitea, A.; Lazovic, R. Contraction conditions using comparison functions on b-metric spaces. Fixed Point Theory Appl. 2014, 2014, 135. [Google Scholar] [CrossRef]
- Shukla, S. Partial b-Metric Spaces and Fixed Point Theorems. Mediterr. J. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanwal, T.; Hussain, A.; Kumam, P.; Savas, E. Weak Partial b-Metric Spaces and Nadler’s Theorem. Mathematics 2019, 7, 332. https://doi.org/10.3390/math7040332
Kanwal T, Hussain A, Kumam P, Savas E. Weak Partial b-Metric Spaces and Nadler’s Theorem. Mathematics. 2019; 7(4):332. https://doi.org/10.3390/math7040332
Chicago/Turabian StyleKanwal, Tanzeela, Azhar Hussain, Poom Kumam, and Ekrem Savas. 2019. "Weak Partial b-Metric Spaces and Nadler’s Theorem" Mathematics 7, no. 4: 332. https://doi.org/10.3390/math7040332
APA StyleKanwal, T., Hussain, A., Kumam, P., & Savas, E. (2019). Weak Partial b-Metric Spaces and Nadler’s Theorem. Mathematics, 7(4), 332. https://doi.org/10.3390/math7040332