Common Fixed Point Results for Rational (α,β)φ-mω Contractions in Complete Quasi Metric Spaces
Abstract
:1. Introduction
- (i)
- if and only if and
- (ii)
- for all
- (i)
- We call left Cauchy if for each , there exists a positive integer i such that for all
- (ii)
- We call right Cauchy if for each there exists a positive integer i such that for all
- (W1)
- for all
- (W2)
- for any is lower semi-continuous, and
- (mW3)
- for each , there exists such that if and , then for all
- (mW2)
- for any then is lower semi-continuous.
- (i)
- If for any with , then is right Cauchy.
- (ii)
- If for any with , then is left Cauchy.
- (i)
- φ is nondecreasing and
- (ii)
- for all
- (i)
- is α-admissible,
- (ii)
- For all
2. Main Results
- (i)
- is -admissible, and
- (ii)
- if , , and , then
- 1.
- is -triangular admissible and
- 2.
- there exists such that and
- (i)
- is -triangular admissible,
- (ii)
- is a rational - contraction, and
- (iii)
- there exists such that:
- 1.
- and are continuous,
- 2.
- is -triangular admissible,
- 3.
- is a rational - contraction, and
- 4.
- there exists such that:
- (1)
- is a complete quasi metric space,
- (2)
- is the mω-distance on
- (3)
- φ is a c-comparison function,
- (4)
- S and T are continuous,
- (5)
- is -triangular admissible,
- (6)
- is a rational - contraction.
- (i)
- , and
- (ii)
- if , , and , then
- 1.
- ϱ is -triangular admissible and
- 2.
- there exists such that and
- (i)
- ϱ is -triangular admissible,
- (ii)
- ϱ is a rational - contraction, and
- (iii)
- there exists such that:
- 1.
- ϱ is continuous,
- 2.
- ϱ is -triangular admissible,
- 3.
- ϱ is a rational - contraction, and
- 4.
- there exists such that:
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les, Opération dans les ensembles abstraits et leur application aux equations integral. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Karapinar, E. Weak ϕ-contraction on partial metric spaces. Comput. Anal. Appl. 2012, 14, 206–210. [Google Scholar]
- Kannan, R. Some results on fixed point. Bull. Calcutta Math. Soi. 1968, 60, 71–76. [Google Scholar]
- Shatanawi, W. Fixed and common fixed point theoerms in frame of quasi metric spaces based on ultra distance functions. Nonlinear Anal. Model. Control 2018, 23, 724–748. [Google Scholar] [CrossRef]
- Shatanawi, W.; Noorani, M.S.; Alsamir, H.; Bataihah, A. Fixed and common fixed point theorems in partially ordered quasi metric spaces. J. Math. Comput. Sci. 2012, 16, 516–528. [Google Scholar] [CrossRef]
- Karapinar, E. Best proximity points of cyclic mappings. Appl. Math. Lett. 2012, 25, 1761–1766. [Google Scholar] [CrossRef] [Green Version]
- Nuseir, I.; Shatanawi, W.; Abu-Irwaq, I.; Bataihah, A. Nonlinear contraction and fixed point theorems with modified ω-distance mappings in complete quasi metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 5342–5350. [Google Scholar] [CrossRef]
- Karapinar, E.; Erhan, I.M. Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24, 1900–1904. [Google Scholar] [CrossRef]
- Abdeljawad, T. Meir-Keeler α-contractive fixed and common fixed point theorems. Fixed Point Theory Appl. 2013, 10, 1–10. [Google Scholar]
- Abodayeh, K.; Shatanawi, W.; Bataihah, A.; Ansari, A.H. Some fixed point and common fixed point results through Ω—distance under nonlinear contraction. Gazi Univ. J. Sci. 2017, 30, 293–302. [Google Scholar]
- Abodayeh, K.; Batiahah, A.; Shatanawi, W. Generalized Ω-distance mappings and some fixed point theorems. Politehn Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 2017, 79, 223–232. [Google Scholar]
- Shatanawi, W.; Postolache, M. Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013. [Google Scholar] [CrossRef]
- Karapinar, E. A note on common fixed point theorems in partial metric spaces. Miskolc Math. Notes 2011, 12, 185–191. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Shatanawi, W. Tripled coincidence point results for generalized contractions in ordered generalized metric spaces. Fixed Point Theory Appl. 2012. [Google Scholar] [CrossRef]
- Aydi, H.; Jellali, M.; Karapınar, E. On fixed point results for α-implicit contractions in quasi metric spaces and consequences. Nonlinear Anal. Model. Control 2016, 21, 40–56. [Google Scholar] [CrossRef]
- Shatanawi, W.; Pitea, A. Some coupled fixed point theorems in quasi-partial metric spaces. Fixed Point Theory Appl. 2013. [Google Scholar] [CrossRef]
- Aydi, H.; Vetro, C.; Karapinar, E. Meir-Keeler type contractions for tripled fixed points. Acta Math. Scientia 2012, 32, 2119–2130. [Google Scholar] [CrossRef]
- Wilson, W.A. On quasi-metric spaces. Amer J. Math. 1931, 53, 675–684. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012. [Google Scholar] [CrossRef]
- Alegre, C.; Marin, J. Modified ω-distance on quasi metric spaces and fixed point theorems on complete quasi metric spaces. Topol. Appl. 2106, 203, 120–129. [Google Scholar] [CrossRef]
- Berinde, V. Generalized Contractions and Applications; Editura Cub Press: Dolj, Romania, 1997; Volume 22. (In Romanian) [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, B. Fixed point theorems for a α − ψ-contractive type mappings. Nonlinear Anal. Theory Methods Appl. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Karapinar, E.; Kumam, P.; Salimi, P. On α − ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013. [Google Scholar] [CrossRef]
- Shatanawi, W. Common Fixed Points for Mappings under Contractive Conditions of (α,β,ψ)-Admissibility Type. Mathematics 2018, 6, 261. [Google Scholar] [CrossRef]
- Hussain, N.; Karapinar, E.; Salimi, P.; Akbar, F. α-admissible mappings and related fixed point theorems. J. Inequal. Appl. 2013. [Google Scholar] [CrossRef]
- Abodayeh, K.; Shatanawi, W.; Turkoglu, D. Some fixed point theorems in quasi-metric spaces under quasi weak conractions. Glob. J. Pure Appli. Math. 2016, 12, 4771–4780. [Google Scholar]
- Bilgili, N.; Karapinar, E.; Samet, B. Generalized α-ψ contractive mappings in quasi-metric spaces and related fixed-point theorems. J. Inequal. Appl. 2014. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qawasmeh, T.; Shatanawi, W.; Bataihah, A.; Tallafha, A. Common Fixed Point Results for Rational (α,β)φ-mω Contractions in Complete Quasi Metric Spaces. Mathematics 2019, 7, 392. https://doi.org/10.3390/math7050392
Qawasmeh T, Shatanawi W, Bataihah A, Tallafha A. Common Fixed Point Results for Rational (α,β)φ-mω Contractions in Complete Quasi Metric Spaces. Mathematics. 2019; 7(5):392. https://doi.org/10.3390/math7050392
Chicago/Turabian StyleQawasmeh, Tariq, Wasfi Shatanawi, Anwar Bataihah, and Abdalla Tallafha. 2019. "Common Fixed Point Results for Rational (α,β)φ-mω Contractions in Complete Quasi Metric Spaces" Mathematics 7, no. 5: 392. https://doi.org/10.3390/math7050392
APA StyleQawasmeh, T., Shatanawi, W., Bataihah, A., & Tallafha, A. (2019). Common Fixed Point Results for Rational (α,β)φ-mω Contractions in Complete Quasi Metric Spaces. Mathematics, 7(5), 392. https://doi.org/10.3390/math7050392