Large Contractions on Quasi-Metric Spaces with an Application to Nonlinear Fractional Differential Equations
Abstract
:1. Introduction and Preliminaries
2. Main Results
- (U) if ω and υ are two fixed points of T, then ,
- (I)
- and ;
- (II)
- There exist and such that
3. Ulam-Stability
4. An Application
- (i)
- (ii)
- f is non-decreasing with respect to its second variable with respect to the partial order ⪯;
- (iii)
- There exists such that for each , we have
- (iv)
- If is a sequence in X such that for each n and as , then there exists a subsequence of such that for each k.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Berinde, V. Approximating fixed points of weak contractions using the Picard iteration. Nonlinear Anal. Forum 2004, 9, 43–54. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α − ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef]
- Popescu, O. Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces. Fixed Point Theory Appl. 2014, 2014, 190. [Google Scholar] [CrossRef]
- Afshari, H.; Kalantari, S.; Aydi, H. Fixed point results for generalized α − ψ-Suzuki-contractions in quasi-b-metric-like spaces. Asian-Eur. J. Math. 2018, 11, 1850012. [Google Scholar] [CrossRef]
- Amiri, P.; Rezapour, S.; Shahzad, N. Fixed points of generalized α − ψ-contractions. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2014, 108, 519–526. [Google Scholar] [CrossRef]
- Aksoy, U.; Karapinar, E.; Erhan, I.M. Fixed points of generalized α-admissible contractions on b-metric spaces with an application to boundary value problems. J. Nonlinear Convex Anal. 2016, 17, 1095–1108. [Google Scholar]
- Alharbi, A.S.; Alsulami, H.H.; Karapinar, E. On the Power of Simulation and Admissible Functions in Metric Fixed Point Theory. J. Funct. Spaces 2017, 2017, 2068163. [Google Scholar] [CrossRef]
- Ali, M.U.; Kamram, T.; Karapinar, E. An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping. Abstr. Appl. Anal. 2014, 2014, 141489. [Google Scholar] [CrossRef]
- AlMezel, S.; Chen, C.M.; Karapinar, E.; Rakocevic, V. Fixed point results for various α-admissible contractive mappings on metric-like spaces. Abstr. Appl. Anal. 2014, 2014, 379358. [Google Scholar]
- AlSulami, H.; Gulyaz, S.; Karapinar, E.; Erhan, I.M. Fixed point theorems for a class of α-admissible contractions and applications to boundary value problem. Abstr. Appl. Anal. 2014, 2014, 187031. [Google Scholar] [CrossRef]
- Aydi, H.; Jellali, M.; Karapinar, E. On fixed point results for α-implicit contractions in quasi-metric spaces and consequences. Nonlinear Anal. Model. Control 2016, 21, 40–56. [Google Scholar] [CrossRef]
- Aydi, H.; Felhi, A.; Karapinar, E.; Alojail, F.A. Fixed points on quasi-metric spaces via simulation functions and consequences. J. Math. Anal. 2018, 9, 10–24. [Google Scholar]
- Karapınar, E.; Agarwal, R.P. A note on Coupled fixed point theorems for α − ψ-contractive-type mappings in partially ordered metric spaces. Fixed Point Theory Appl. 2013, 2013, 216. [Google Scholar] [CrossRef]
- Asadi, M.; Karapinar, E.; Kumar, A. α − ψ-Geraghty contractions on generalized metric spaces. J. Inequal. Appl. 2014, 2014, 423. [Google Scholar] [CrossRef]
- Karapınar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [Google Scholar] [CrossRef]
- Karapınar, E.; Samet, B. Generalized (α − ψ)-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, 2012, 793486. [Google Scholar] [CrossRef]
- Ameer, E.; Aydi, H.; Arshad, M.; Alsamir, H.; Noorani, M.S. Hybrid multivalued type contraction mappings in αK-complete partial b-metric spaces and applications. Symmetry 2019, 11, 86. [Google Scholar] [CrossRef]
- Karapinar, E.; Aydi, H.; Samet, B. Fixed points for generalized (α − ψ)-contractions on generalized metric spaces. J. Inequal. Appl. 2014, 2014, 229. [Google Scholar]
- Cho, S.H. A fixed point theorem for weakly α-contractive mappings with application. Appl. Math. Sci. 2013, 7, 2953–2965. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Metiya, N.; Bandyopadhyay, C. Fixed points of multivalued α-admissible mappings and stability of fixed point sets in metric spaces. Rendiconti del Circolo Matematico di Palermo 2015, 64, 43–55. [Google Scholar] [CrossRef]
- Fulga, A.; Taş, A. Fixed point results via simulation functions in the context of quasi-metric space. Filomat 2018, 32, 4711–4729. [Google Scholar] [CrossRef]
- Hammache, K.; Karapinar, E.; Ould-Hammouda, A. On Admissible Weak Contractions in b-Metric-Like Space. J. Math. Anal. 2017, 8, 167–180. [Google Scholar]
- Alqahtani, B.; Fulga, A.; Karapınar, E. Fixed Point Results on Δ-symmetric quasi-metric space via simulation function with an application to Ulam stability. Mathematics 2018, 6, 208. [Google Scholar] [CrossRef]
- Aydi, H.; Felhi, A.; Karapinar, E. On common best proximity points for generalized α − ψ-proximal contractions. J. Nonlinear Sci. Appl. 2016, 9, 2658–2670. [Google Scholar] [CrossRef]
- Karapinar, E.; Kumam, P.; Salimi, P. On α − ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 2013, 94. [Google Scholar] [CrossRef]
- Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Cluj-Napoca, Romania, 2001. [Google Scholar]
- Berinde, V. Contracţii Generalizate Şi Aplicaţii; Editura Club Press 22: Baia Mare, Romania, 1997. [Google Scholar]
- Aydi, H.; Wongyat, T.; Sintunavarat, W. On new evolution of Ri’s result via w-distances and the study on the solution for nonlinear integral equations and fractional differential equations. Adv. Differ. Equ. 2018, 2018, 132. [Google Scholar] [CrossRef]
- Aydi, H.; Marasi, H.R.; Piri, H.; Talebi, A. A solution to the new Caputo-Fabrizio fractional KDV equation via stability. J. Math. Anal. 2017, 8, 147–155. [Google Scholar]
- Baleanu, D.; Rezapour, S.; Mohammadi, M. Some existence results on nonlinear fractional differential equations. Philos. Trans. A 2013, 371, 20120144. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Hajipour, M. A new formulation of the fractional optimal control problems involving Mittag-Leffler nonsingular kernel. J. Optim. Theory Appl. 2017, 175, 718–737. [Google Scholar] [CrossRef]
- Samet, B.; Aydi, H. On some inequalities involving Caputo fractional derivatives and applications to special means of real numbers. Mathematics 2018, 6, 193. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karapınar, E.; Fulga, A.; Rashid, M.; Shahid, L.; Aydi, H. Large Contractions on Quasi-Metric Spaces with an Application to Nonlinear Fractional Differential Equations. Mathematics 2019, 7, 444. https://doi.org/10.3390/math7050444
Karapınar E, Fulga A, Rashid M, Shahid L, Aydi H. Large Contractions on Quasi-Metric Spaces with an Application to Nonlinear Fractional Differential Equations. Mathematics. 2019; 7(5):444. https://doi.org/10.3390/math7050444
Chicago/Turabian StyleKarapınar, Erdal, Andreea Fulga, Maliha Rashid, Lariab Shahid, and Hassen Aydi. 2019. "Large Contractions on Quasi-Metric Spaces with an Application to Nonlinear Fractional Differential Equations" Mathematics 7, no. 5: 444. https://doi.org/10.3390/math7050444
APA StyleKarapınar, E., Fulga, A., Rashid, M., Shahid, L., & Aydi, H. (2019). Large Contractions on Quasi-Metric Spaces with an Application to Nonlinear Fractional Differential Equations. Mathematics, 7(5), 444. https://doi.org/10.3390/math7050444