On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations
Abstract
:1. Introduction
2. Preliminaries
- () is non-decreasing;
- () for each positive sequence ,
- () is continuous.
- (i)
- is monotone increasing, that is, implies that ;
- (ii)
- for all , where stands for the nth iterate of
- (i)
- and;
- (ii)
- for all.
3. Fixed Point Theorems
- (a)
- is non-empty,
- (b)
- ℜ is-closed,
- (c)
- iscontraction,
- (d)
- ϕ and ψ are continuous.
- (a)
- andare non-empty,
- (b)
- there exist a continuous comparison function Υ and a functionso that for all
- (c)
- (c) ϕ and ψ are continuous,
- (d)
- ℜ is-closed.
- (a)
- is non-empty;
- (b)
- there exist a continuous comparison function Υ and a functionso that for allthe inequality (1) is true,
- (c)
- is ℜ-regular,
- (d)
- ℜ is-closed.
- (a)
- andare non-empty;
- (b)
- there exist a continuous comparison function Υ and a functionso that for all
- (c)
- is ℜ-regular,
- (d)
- ℜ is-closed.
- (a)
- is non-empty,
- (b)
- ℜ is ϕ-closed,
- (c)
- either ϕ is continuous, oris ℜ-regular;
- (d)
- there exist a continuous comparison function Υ and a functionsuch that for all
- (a)
- andare non-empty;
- (b)
- ℜ is ϕ-closed;
- (c)
- ϕ is continuous oris ℜ-regular;
- (d)
- if there exist a continuous comparison function Υ and a functionsuch that for allwe have
4. Some Consequences
- (a)
- is non-empty;
- (b)
- ℜ is-closed;
- (c)
- ϕ and ψ are continuous;
- (d)
- there existandsuch that, for all
- (a)
- is non-empty;
- (b)
- ℜ is ϕ-closed;
- (c)
- ϕ is continuous;
- (d)
- if there areandsuch that, for all
- (a)
- is non-empty;
- (b)
- ℜ is-closed;
- (c)
- ϕ and ψ are continuous;
- (d)
- there existandsuch that, for all
- (a)
- is non-empty;
- (b)
- ℜ is-closed;
- (c)
- ϕ and ψ are continuous;
- (d)
- there existandsuch that, for all
- (a)
- is non-empty;
- (b)
- ℜ is-closed;
- (c)
- ϕ and ψ are continuous;
- (d)
- there exists a function β such that, for all
5. Applications to Nonlinear Matrix Equations
- (h1)
- there exist two positive realsandso thatand
- (h2)
- (1)
- there is a real positive number δ such that
- (2)
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76. [Google Scholar]
- Aydi, H.; Barakat, M.A.; Mitrovć, Z.D.; Cavic, V.S. A Suzuki type multi-valued contraction on weak partial metric spaces and applications. J. Inequal. Appl. 2018, 2018, 270. [Google Scholar] [CrossRef] [PubMed]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
- Nadler, S.B. Multivalued contraction mappings. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Felhi, A.; Aydi, H. New fixed point results for multi-valued maps via manageable functions and an application on a boundary value problem. U.P.B. Sci. Bull. Ser. 2018, 80, 1–12. [Google Scholar]
- Felhi, A.; Aydi, H.; Zhang, D. Fixed points for α-admissible contractive mappings via simulation functions. J. Nonlinear Sci. Appl. 2016, 9, 5544–5560. [Google Scholar] [CrossRef]
- Piri, H.; Rahrovi, S. Generalized multivalued F-weak contractions on complete metric spaces. Sahand Commun. Math. Anal. 2015, 2, 1–11. [Google Scholar]
- Suzuki, T. A new type of fixed point theorem in metric spaces. Nonlinear Anal. 2009, 71, 5313–5317. [Google Scholar] [CrossRef]
- Ameer, E.; Arshad, M.; Shatanawi, W. Common fixed point results for generalized α*-ψ-contraction multivalued mappings in b-metric spaces. J. Fixed Point Theory Appl. 2017. [Google Scholar] [CrossRef]
- Hussian, N.; Shah, M.H. KKM mappings in cone b-metric spaces. Comput. Math. Appl. 2011, 62, 1677–1684. [Google Scholar] [CrossRef]
- Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Semin. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
- Lipschitz, S. Schaum’s Outlines of Theory and Problems of Set Theory and Related Topics; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Roldan Lopez de Hierro, A.F. A unified version of Ran and Reurings theorem and Nieto and Rodra iguez-LApezs theorem and low-dimensional generalizations. Appl. Math. Inf. Sci. 2016, 10, 383–393. [Google Scholar]
- Karapinar, E.; Alqahtani, O.; Aydi, H. On interpolative Hardy-Rogers type contractions. Symmetry 2018, 11, 8. [Google Scholar] [CrossRef]
- Ameer, E.; Aydi, H.; Arshad, M.; Alsamir, H.; Noorani, M.S. Hybrid multivalued type contraction mappings in αK-complete partial b-metric spaces and applications. Symmetry 2019, 11, 86. [Google Scholar] [CrossRef]
- Sawangsup, K.; Sintunavarat, W.; Roldán López de Hierro, A.F. Fixed point theorems for Fℜ-contractions with applications to solution of nonlinear matrix equations. J. Fixed Point Theory Appl. 2016. [Google Scholar] [CrossRef]
- Isik, H.; Hussain, N.; Kutbi, M.A. Generalized rational contractions endowed with a graph and an application to a system of integral equations. J. Comput. Anal. Appl. 2017, 22, 1158–1175. [Google Scholar]
- Isik, H.; Ionescu, C. New type of multivalued contractions with related results and applications. U.P.B. Sci. Bull. Ser. A 2018, 80, 13–22. [Google Scholar]
- Isik, H.; Radenovic, S. A new version of coupled fixed point results in ordered metric spaces with applications. U.P.B. Sci. Bull. Ser. A 2017, 79, 131–138. [Google Scholar]
- Isik, H.; Turkoglu, D. Generalized weakly α-contractive mappings and applications to ordinary differential equations. Miskolc Math. Notes 2016, 17, 365–379. [Google Scholar] [CrossRef]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef]
- Piri, H.; Kumam, P. Some fixed point theorems concerning F-contraction in complete metric spaces. Fixed Point Theory Appl. 2014, 2014, 11. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. J. Inequal. Appl. 2014, 2014, 38. [Google Scholar] [CrossRef]
- Jleli, M.; Karapinar, E.; Samet, B. Further generalizations of the Banach contraction principle. J. Inequal. Appl. 2014, 2014, 439. [Google Scholar] [CrossRef]
- Liu, X.D.; Chang, S.S.; Xiiao, Y.; Zhao, L.C. Some fixed point theorems concerning ψ,ϕ-type contraction in complete metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 4127–4136. [Google Scholar] [CrossRef]
- Al-Rawashdeh, A.; Aydi, H.; Felhi, A.; Sahmim, S.; Shatanawi, W. On common fixed points for α-F-contractions and applications. J. Nonlinear Sci. Appl. 2016, 9, 3445–3458. [Google Scholar] [CrossRef]
- Aydi, H.; Karapinar, E.; Yazidi, H. Modified F-contractions via α-admissible mappings and application to integral equations. Filomat 2017, 31, 1141–1148. [Google Scholar] [CrossRef]
- Nazam, M.; Aydi, H.; Noorani, M.S.; Qawaqneh, H. Existence of Fixed Points of Four Maps for a New Generalized F-Contraction and an Application. J. Funct. Spaces 2019, 2019, 5980312. [Google Scholar] [CrossRef]
- Berinde, V. Generalized Contractions and Applications; Editura Cub Press: Baia Mare, Romania, 1997. [Google Scholar]
- Alam, A.; Imdad, M. Relation-theoretic contraction principle. Fixed Point Theory 2015, 17, 693–702. [Google Scholar] [CrossRef]
- Kolman, B.; Busby, R.C.; Ross, S. Discrete Mathematical Structures, 3rd ed.; PHI Pvt.: New Delhi, India, 2000. [Google Scholar]
- Zada, M.B.; Sarwar, M. Common fixed point theorems for rational Fℜ-contractive pairs of mappings with applications. J. Inequal. Appl. 2019, 2019, 11. [Google Scholar] [CrossRef]
- AlSulami, H.H.; Ahmad, J.; Hussain, N.; Latif, A. Relation Theoretic (Θ,ℜ) Contraction Results with Applications to Nonlinear Matrix Equations. Symmetry 2018, 10, 767. [Google Scholar] [CrossRef]
- Berzig, M. Solving a class of matrix equations via the Bhaskar–Lakshmikantham coupled fixed point theorem. Appl. Math. Lett. 2012, 25, 1638–1643. [Google Scholar] [CrossRef]
- Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2003, 132, 1435–1443. [Google Scholar] [CrossRef]
- Berzig, M.; Samet, B. Solving systems of nonlinear matrix equations involving Lipschitzian mappings. Fixed Point Theory Appl. 2011, 2011, 89. [Google Scholar] [CrossRef]
- Long, J.H.; Hu, X.Y.; Zhang, L. On the Hermitian positive definite solution of the nonlinear matrix equation X + A*x−1A + B*X−1B = I. Bull. Braz. Math. Soc. 2015, 39, 317–386. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ameer, E.; Nazam, M.; Aydi, H.; Arshad, M.; Mlaiki, N. On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations. Mathematics 2019, 7, 443. https://doi.org/10.3390/math7050443
Ameer E, Nazam M, Aydi H, Arshad M, Mlaiki N. On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations. Mathematics. 2019; 7(5):443. https://doi.org/10.3390/math7050443
Chicago/Turabian StyleAmeer, Eskandar, Muhammad Nazam, Hassen Aydi, Muhammad Arshad, and Nabil Mlaiki. 2019. "On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations" Mathematics 7, no. 5: 443. https://doi.org/10.3390/math7050443
APA StyleAmeer, E., Nazam, M., Aydi, H., Arshad, M., & Mlaiki, N. (2019). On (Λ,Υ,ℜ)-Contractions and Applications to Nonlinear Matrix Equations. Mathematics, 7(5), 443. https://doi.org/10.3390/math7050443