Some Remarks and New Results in Ordered Partial b-Metric Spaces
Abstract
:1. Introduction
2. Definitions, Notations and Preliminaries
- (b1)
- iff ;
- (b2)
- ;
- (b3)
- .
- (p1)
- iff
- (p2)
- ;
- (p3)
- ;
- (p4)
- ,
- (pb1)
- iff ;
- (pb2)
- ;
- (pb3)
- ;
- (pb4)
- ,
- (i)
- -converges to if ;
- (ii)
- is -Cauchy if exists (and is finite).
- (iii)
- Also, is said to be -complete if each -Cauchy sequence in X, -converges to so that
- 1.
- A sequence is called -Cauchy if .
- 2.
- is called -complete if for each -Cauchy sequence in X, there is such that
- 1.
- is a b-metric with coefficient s on X.
- 2.
- If in , then in .
- 3.
- is -complete iff is - complete.
3. Improvement Results and Remarks on Recent Ones
- (1)
- f is α-admissible and -admissible (or -admissible);
- (2)
- there is so that and ;
- (3)
- f is continuous, nondecreasing, with respect to ⪯ and if then .
- (1)
- f is α-admissible and -admissible (or -admissible);
- (2)
- there is so that and ;
- (3)
- f is nondecreasing, with respect to ⪯;
- (4)
- If is such that for each , and , as , then for each ;
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abdeljawad, T.; Abodayeh, K.; Mlaiki, N. On fixed point generalizations to partial b-metric spaces. J. Comput. Anal. Appl. 2015, 19, 883–891. [Google Scholar]
- Agarwal, R.P.; Karapinar, E.; O’Regan, D.; De Hierro, A.F.R.L. Fixed Point Theory in Metric Type Spaces; Springer International Publishing Switzerland: Cham, Switzerland, 2015. [Google Scholar]
- Aydi, H. α–implicit contractive pair of mappings on quasi b–metric spaces and an application to integral equations. J. Nonlinear Convex Anal. 2016, 17, 2417–2433. [Google Scholar]
- Aydi, H.; Felhi, A.; Sahmim, S. Ćirić-Berinde fixed point theorems for multi-valued mappings on α–complete metric-like spaces. Filomat 2017, 31, 3727–3740. [Google Scholar] [CrossRef]
- Aydi, H.; Felhi, A.; Karapinar, E. On common best proximity points for generalized α − ψ–proximal contractions. J. Nonlinear Sci. Appl. 2016, 9, 2658–2670. [Google Scholar] [CrossRef]
- Aydi, H.; Felhi, A.; Sahmim, S. On common fixed points for (α,ψ)–contractions and generalized cyclic contractions in b -metric-like spaces and consequences. J. Nonlinear Sci. Appl. 2016, 9, 2492–2510. [Google Scholar] [CrossRef]
- Aydi, H.; Jellali, M.; Karapinar, E. On fixed point results for α–implicit contractions in quasi-metric spaces and consequences. Nonlinear Anal. Model. Control 2016, 21, 40–56. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction principle in quasimetric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b–metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Ding, H.S.; Imdad, M.; Radenović, S.; Vujaković, J. On some fixed point results in b–metric, rectangular and b–rectangular metric spaces. Arab. J. Math. Sci. 2016, 22, 151–164. [Google Scholar]
- Došenović, T.; Pavlović, M.; Radenović, S. Contractive conditions in b–metric spaces. Vojnoteh. Glas./Mil. Tech. Cour. 2017, 65, 851–865. [Google Scholar] [CrossRef]
- Dung, N.V.; Hang, V.T.L. Remarks on partial b–metric spaces and fixed point theorems. Matematički Vesnik 2017, 69, 231–240. [Google Scholar]
- Felhi, A.; Aydi, H. New fixed point results for multi-valued maps via manageable functions and an application on a boundary value problem. UPB Sci. Bull. Ser. A 2018, 80, 1–12. [Google Scholar]
- Felhi, A.; Aydi, H.; Zhang, D. Fixed points for alpha-admissible contractive mappings via simulation functions. J. Nonlinear Sci. Appl. 2016, 9, 5544–5560. [Google Scholar] [CrossRef]
- Ge, X.; Lin, S. A note on partial b–metric spaces. Mediterr. J. Math. 2016, 13, 1273–1276. [Google Scholar] [CrossRef]
- Guseman, L.F. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 1970, 26, 615–618. [Google Scholar] [CrossRef]
- Haghi, R.H.; Rezapour, S.; Shahzad, N. Be careful on partial metric fixed point results. Topol. Appl. 2013, 60, 450–454. [Google Scholar] [CrossRef]
- Hitzler, P.; Seda, A.K. Dislocated Topologies. J. Electr. Eng. 2000, 51, 3–7. [Google Scholar]
- Jeong, G.S.; Rhoades, B.E. Maps for which F(T) = F(Tn). Fixed Point Theory Appl. 2005, 6, 87–131. [Google Scholar]
- Karapinar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b–metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [Google Scholar] [CrossRef]
- Kirk, W.; Shahazad, N. Fixed Point Theory in Distance Spaces; Springer International Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Matthews, S.G. Metric Domains for Completeness Technical Report 76. Ph.D. Thesis, Department of Computer Science, University of Warwick, Coventry, UK, 1986. [Google Scholar]
- Meir, A.; Keeler, E. A theorem on contraction mappings. J. Math. Anal. Appl. 1969, 28, 326–329. [Google Scholar] [CrossRef]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b–metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Mitrović, Z.D. A fixed point theorem for mappings with a contractive iterate in rectangular b–metric spaces. Matematički Vesnik 2018, 70, 204–210. [Google Scholar]
- Mitrović, Z.D. An extension of fixed point theorem of Sehgal in b–metric spaces. Commun. Appl. Nonlinear Anal. 2018, 25, 54–61. [Google Scholar]
- Mukheimer, A. α − ψ − φ–contractive mappings in ordered partial b–metric spaces. J. Nonliner Sci. Appl. 2014, 7, 168–179. [Google Scholar] [CrossRef]
- Mukheimer, A. Extended Partial Sb–Metric spaces. Axioms 2018, 7, 87. [Google Scholar] [CrossRef]
- Mustafa, Z.; Roshan, J.R.; Parvaneh, V.; Kadelburg, Z. Some common fixed point results in ordered partial b–metric spaces. J. Inequal. Appl. 2013, 2013, 562. [Google Scholar] [CrossRef]
- Mustafa, Z.; Jaradat, M.M.M.; Aydi, H.; Alrhayyel, A. Some common fixed points of six mappings on Gb–metric spaces using (E.A) property. Eur. J. Pure Appl. Math. 2018, 11, 90–109. [Google Scholar] [CrossRef]
- Piri, H.; Afshari, H. Some fixed point theorems in complete partial b–metric spaces. Adv. Fixed Point Theory 2014, 4, 444–461. [Google Scholar]
- Rhoades, B.E. A comparison of various definitions of contractive mappings. Trans. Am. Math. Soc. 2001, 226, 257–290. [Google Scholar] [CrossRef]
- Sehgal, V.M. A fixed point theorem for mappings with a contractive iterate. Proc. Am. Math. Soc. 1969, 23, 631–634. [Google Scholar] [CrossRef]
- Shatanawi, W.; Abodayeh, K.; Mukheimer, A. Some Fixed Point Theorems in Extended b–metric spaces. Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2018, 80, 71–78. [Google Scholar]
- Shukla, S. Partial b–metric spaces and fixed point theorems. Mediterr. J. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
- Shukla, S. Some fixed point theorems for ordered contractions in partial b–metric spaces. J. Sci. Gazi Univ. 2017, 30, 345–354. [Google Scholar]
- Singh, D.; Chjauhan, V.; Altun, I. Common fixed point of a power graphic F,ψ–contraction pair on partial b–metric spaces with application. Nonlinear Anal. Model. Control 2017, 5, 662–678. [Google Scholar] [CrossRef]
- De la Sen, M. Some Results on Fixed and Best Proximity Points of Multivalued Cyclic Self-Mappings with a Partial Order. Abstr. Appl. Anal. 2013, 2013, 968492. [Google Scholar] [CrossRef]
- Beg, I.; Butt, A.R. Common fixed point and coincident point of generalized contractions in ordered metric spaces. Fixed Point Theory Appl. 2012, 2012, 229. [Google Scholar] [CrossRef]
- Petruşel, P.; Petruşel, G. On Reich’s strict fixed point theorem for multi-valued operators in complete metric spaces. J. Nonlinear Var. Anal. 2018, 2, 103–112. [Google Scholar]
- Petruşel, A.; Petruşel, G.; Yao, J.-C. Fixed point and coincidence point theorems in b -metric spaces with applications. Appl. Anal. Discret. Math. 2017, 11, 199–215. [Google Scholar] [CrossRef]
- Khan, M.S.; Swaleh, M.; Sessa, S. Fixed point theorems by altering distances between the points. Bul. Aust. Math. Soc. 1984, 30, 1–9. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vujaković, J.; Aydi, H.; Radenović, S.; Mukheimer, A. Some Remarks and New Results in Ordered Partial b-Metric Spaces. Mathematics 2019, 7, 334. https://doi.org/10.3390/math7040334
Vujaković J, Aydi H, Radenović S, Mukheimer A. Some Remarks and New Results in Ordered Partial b-Metric Spaces. Mathematics. 2019; 7(4):334. https://doi.org/10.3390/math7040334
Chicago/Turabian StyleVujaković, Jelena, Hassen Aydi, Stojan Radenović, and Aiman Mukheimer. 2019. "Some Remarks and New Results in Ordered Partial b-Metric Spaces" Mathematics 7, no. 4: 334. https://doi.org/10.3390/math7040334
APA StyleVujaković, J., Aydi, H., Radenović, S., & Mukheimer, A. (2019). Some Remarks and New Results in Ordered Partial b-Metric Spaces. Mathematics, 7(4), 334. https://doi.org/10.3390/math7040334