On the Rate of Convergence for a Characteristic of Multidimensional Birth-Death Process
Abstract
:1. Introduction and Preliminaries
2. Bounds on the Rate of Convergence for a Differential Equation
3. Bounds on the Rate of Convergence for a Projection of Multidimensional BDP
4. Example
- (i)
- from to ;
- (ii)
- from to if ;
- (iii)
- from to ;
- (iv)
- from to ;
- (v)
- from to ;
- (i)
- , for any (blue); and
- (ii)
- , , for any such that (green).
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michaelides, M.; Hillston, J.; Sanguinetti, G. Geometric fluid approximation for general continuous-time Markov chains. arXiv 2019, arXiv:1901.11417. [Google Scholar]
- Goswami, B.B.; Khouider, B.; Phani, R.; Mukhopadhyay, P.; Majda, A. Improving synoptic and intraseasonal variability in CFSv2 via stochastic representation of organized convection. Geophys. Res. Lett. 2017, 44, 1104–1113. [Google Scholar] [CrossRef]
- Goswami, B.B.; Khouider, B.; Phani, R.; Mukhopadhyay, P.; Majda, A.J. The Stochastic Multi-cloud Model (SMCM) Convective Parameterization in the CFSv2: Scopes and Opportunities. In Current Trends in the Representation of Physical Processes in Weather and Climate Models; Springer: Singapore, 2019; pp. 157–181. [Google Scholar]
- Deng, Q.; Khouider, B.; Majda, A.J. The MJO in a coarse-resolution GCM with a stochastic multicloud parameterization. J. Atmos. Sci. 2015, 72, 55–74. [Google Scholar] [CrossRef]
- Marsan, M.A.; Marano, S.; Mastroianni, C.; Meo, M. Performance analysis of cellular mobile communication networks supporting multimedia services. Mob. Netw. Appl. 2000, 5, 167–177. [Google Scholar] [CrossRef]
- Stevens-Navarro, E.; Mohsenian-Rad, A.H.; Wong, V.W. Connection admission control for multiservice integrated cellular/WLAN system. IEEE Trans. Veh. Technol. 2008, 57, 3789–3800. [Google Scholar] [CrossRef]
- Jonckheere, M.; Lypez, S. Large deviations for the stationary measure of networks under proportional fair allocations. Math. Oper. Res. 2013, 39, 418–431. [Google Scholar] [CrossRef]
- Jonckheere, M.; Shneer, S. Stability of multi-dimensional birth-and-death processes with state-dependent 0-homogeneous jumps. Adv. Appl. Probab. 2014, 46, 59–75. [Google Scholar] [CrossRef]
- Lee, C. On moment stability properties for a class of state-dependent stochastic networks. J. Korean Stat. Soc. 2011, 40, 325–336. [Google Scholar] [CrossRef]
- Mather, W.H.; Hasty, J.; Tsimring, L.S.; Williams, R.J. Factorized time-dependent distributions for certain multiclass queueing networks and an application to enzymatic processing networks. Queueing Syst. 2011, 69, 313–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsitsiashvili, G.S.; Osipova, M.A.; Koliev, N.V.; Baum, D. A product theorem for Markov chains with application to PF-queueing networks. Ann. Oper. Res. 2002, 113, 141–154. [Google Scholar] [CrossRef]
- Granovsky, B.; Zeifman, A. Nonstationary queues: Estimation of the rate of convergence. Queueing Syst. 2004, 46, 363–388. [Google Scholar] [CrossRef]
- Zeifman, A.I. On the estimation of probabilities for birth and death processes. J. Appl. Probab. 1995, 32, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Zeifman, A.I. Upper and lower bounds on the rate of convergence for nonhomogeneous birth and death processes. Stoch. Proc. Appl. 1995, 59, 157–173. [Google Scholar] [CrossRef]
- Zeifman, A.; Leorato, S.; Orsingher, E.; Satin, Y.; Shilova, G. Some universal limits for nonhomogeneous birth and death processes. Queueing Syst. 2006, 52, 139–151. [Google Scholar] [CrossRef] [Green Version]
- Zeifman, A.; Sipin, A.; Korolev, V.; Bening, V. Estimates of some characteristics of multidimensional birth-and-death processes. Dokl. Math. 2015, 92, 695–697. [Google Scholar] [CrossRef]
- Zeifman, A.I.; Sipin, A.S.; Korotysheva, A.V.; Panfilova, T.L.; Satin, Y.A.; Shilova, G.N.; Korolev, V.Y. Estimation of Probabilities for Multidimensional Birth-Death Processes. J. Math. Sci. 2016, 218, 238–244. [Google Scholar] [CrossRef]
- Daleckij, J.L.; Krein, M.G. Stability of solutions of differential equations in Banach space. Am. Math. Soc. Transl. 2002, 43, 1–386. [Google Scholar]
- Britton, T. Stochastic epidemic models: A survey. Math. Biosci. 2010, 225, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Zeifman, A.I. Processes of birth and death and simple stochastic epidemic models. Autom. Remote Control 1985, 6, 128–135. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeifman, A.; Satin, Y.; Kiseleva, K.; Korolev, V. On the Rate of Convergence for a Characteristic of Multidimensional Birth-Death Process. Mathematics 2019, 7, 477. https://doi.org/10.3390/math7050477
Zeifman A, Satin Y, Kiseleva K, Korolev V. On the Rate of Convergence for a Characteristic of Multidimensional Birth-Death Process. Mathematics. 2019; 7(5):477. https://doi.org/10.3390/math7050477
Chicago/Turabian StyleZeifman, Alexander, Yacov Satin, Ksenia Kiseleva, and Victor Korolev. 2019. "On the Rate of Convergence for a Characteristic of Multidimensional Birth-Death Process" Mathematics 7, no. 5: 477. https://doi.org/10.3390/math7050477
APA StyleZeifman, A., Satin, Y., Kiseleva, K., & Korolev, V. (2019). On the Rate of Convergence for a Characteristic of Multidimensional Birth-Death Process. Mathematics, 7(5), 477. https://doi.org/10.3390/math7050477