Next Article in Journal
On the Rate of Convergence for a Characteristic of Multidimensional Birth-Death Process
Next Article in Special Issue
Some New Observations on Geraghty and Ćirić Type Results in b-Metric Spaces
Previous Article in Journal
An Efficient Memetic Algorithm for the Minimum Load Coloring Problem
Previous Article in Special Issue
Generalized (ψ,α,β)—Weak Contractions for Initial Value Problems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Some New Fixed Point Results in Complete Extended b-Metric Spaces

1
School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
2
School of Natural Sciences, National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan
3
Department of Mathematical Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
4
Institut Supérieur d’Informatique et des Techniques de Communication, Université de Sousse, H. Sousse 4000, Tunisia
5
China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
*
Authors to whom correspondence should be addressed.
Mathematics 2019, 7(5), 476; https://doi.org/10.3390/math7050476
Submission received: 4 May 2019 / Revised: 18 May 2019 / Accepted: 20 May 2019 / Published: 25 May 2019
(This article belongs to the Special Issue Fixed Point Theory and Dynamical Systems with Applications)

Abstract

:
In this paper, we specified a method that generalizes a number of fixed point results for single and multi-valued mappings in the structure of extended b-metric spaces. Our results extend several existing ones including the results of Aleksic et al. for single-valued mappings and the results of Nadler and Miculescu et al. for multi-valued mappings. Moreover, an example is given at the end to show the superiority of our results.
2000 Mathematics Subject Classification:
46T99; 47H10; 54H25

1. Introduction and Preliminaries

Banach contraction principle [1] is a fundamental tool for providing the existence of solutions for many mathematical problems involving differential equations and integral equations. A mapping T : U U on a metric space ( U , d ) is called a contraction mapping, if there exists η < 1 such that for all u , v U ,
d ( T u , T v ) η d ( u , v ) .
If the metric space is complete and T satisfies inequality (1), then T has a unique fixed point. Clearly, inequality (1) implies continuity of T . Naturally, a question arises as to whether we can find contractive conditions which will imply the existence of fixed points in a complete metric space, but will not imply continuity. In [2], Kannan derived the following result, which answers the said question. Let T : U U be a mapping on a complete metric space ( U , d ) , which satisfies inequality:
d ( T u , T v ) η [ d ( u , T u ) + d ( v , T v ) ] ,
where η [ 0 , 1 2 ) and u , v U . The mapping satisfying inequality (2) is called a Kannan type mapping. There are number of generalizations of the contraction principle of Banach both for single-valued and multi-valued mappings, see ([3,4,5,6,7,8,9,10,11,12,13]). Chatterjea in [14] established the following alike co ntractive condition. Let ( U , d ) be a complete metric space. A mapping T : U U has a unique fixed point, if it satisfies the following inequality:
d ( T u , T v ) η [ d ( u , T v ) + d ( v , T u ) ] .
where η [ 0 , 1 2 ) and u , v U . The mapping satisfying inequality (3) is called a Chatterjea type mapping.
Due to the problem of the convergence of measurable functions with respect to a measure, Bakhtin [15], Bourbaki [16], and Czerwik [17,18] introduced the concept of b-metric spaces by weakening the triangle inequality of the metric space as follows:
Definition 1
([17]). Let U be a set and s 1 a real number. A function d : U × U [ 0 , ) is called a b-metric space, if it satisfies the following axioms for all u 1 , u 2 , u 3 U :
(1)
d ( u 1 , u 2 ) = 0 if and only if u 1 = u 2 ;
(2)
d ( u 1 , u 2 ) = d ( u 2 , u 1 ) ;
(3)
d ( u 1 , u 3 ) s [ d ( u 1 , u 2 ) + d ( u 2 , u 3 ) ] .
The pair ( U , d ) is called a b-metric space.
Clearly, every metric space is a b-metric space with s = 1 , but its converse is not true in general. After that, a number of research papers have been established that generalized the Banach fixed point result in the framework of b-metric spaces. In [19], Kir and Kiziltunc introduced the following results, which generalized Kannan and Chatterjea type mappings in b-metric spaces. Let T : U U be a mapping on a complete b-metric space ( U , d ) , which satisfies inequality:
d ( T u , T v ) η [ d ( u , T u ) + d ( v , T v ) ] .
where s η [ 0 , 1 2 ) and u , v U . Then T has a unique fixed point.
Let ( U , d ) be a complete b-metric space. A mapping T : U U has a unique fixed point in U , if it satisfies the following inequality:
d ( T u , T v ) η [ d ( u , T v ) + d ( v , T u ) ] ,
for all u , v U , where η [ 0 , 1 2 ) . In [20], the given below results, which generalized Equation (4) for κ 1 = κ 2 = κ 3 = 0 and (5) for κ 1 = κ 4 = 0 and κ 2 = κ 3 , have been derived.
Theorem 1
([20]). Let ( U , d ) be a complete b-metric space with constant s 1 . If T : U U satisfies the inequality:
d ( T u , T v ) κ 1 d   ( u , v ) + κ 2 d   ( u , T u ) + κ 3 d   ( v , T v ) + κ 4 [ d   ( v , T u ) + d   ( u , T v ) ] ,
where,
κ 1 + 2 s κ 2 + κ 3 + 2 s κ 4 < 1 ,
then T has a unique fixed point.
Theorem 2
([20]). Let ( U , d ) be a complete b-metric space with constant s 1 . If T : U U satisfies the inequality:
d ( T u , T v ) κ 1 d ϕ ( u , v ) + κ 2 [ d ϕ ( u , T u ) + d ϕ ( v , T v ) ] ,
for all u , v U , where κ 1 , κ 2 [ 0 , 1 3 ) , then T has a unique fixed point.
In [21], Koleva and Zlatanov proved the following result, which generalizes Chatterjea’s type mappings in b-metric spaces and do not involve the b-metric constant.
Theorem 3
([21]). Let ( U , d ) be a complete b-metric space and d be a continuous function. If T : U U is a Chatterjea’s mapping, i.e., it satisfies inequality (3) such that sup n N { d ( T n u , u ) } < holds for every u U . Then:
(i)
There exists a unique fixed point of T, say ξ;
(ii)
For any u 0 U , the sequence { u n } n = 1 converges to ξ, where u n + 1 = T n u n , n = 0 , 1 , 2 , ;
(iii)
There holds the priori error estimate.
d ( ξ , T m u ) η 1 η m sup j N { d ( T j u , u ) } ,
where η [ 0 , 1 2 ) .
Ilchev and Zlatanov in [22] proved the following result generalizing Theorem 3 for κ 1 = 0 .
Theorem 4
([22]). Let ( U , d ) be a complete b-metric space and d be a continuous function. If,
(1)
T : U U is a Reich mapping, i.e., there exist κ 1 , κ 2 0 , such that κ 1 + 2 κ 2 < 1 , so that the inequality
d ( T u , T v ) κ 1 d ϕ ( u , v ) + κ 2 [ d ( u , T v ) + d ( v , T u ) ] ,
holds for every u , v U ;
(2)
the inequality sup n N { d ( T n u , u ) } < holds for every u U ,
then:
(i)
There exists a unique fixed point of T, say ξ;
(ii)
For any u 0 U , the sequence { u n } n = 1 converges to ξ, where u n + 1 = T n u n , n = 0 , 1 , 2 , ;
(iii)
There holds the priori error estimate.
d ( ξ , T m u ) κ 1 + κ 2 1 κ 2 m sup j N { d ( T j u , u ) } .
In [23], the author introduced the following results, which improve Theorems 1 and 2 of [20].
Theorem 5
([23]). Let ( U , d ) be a complete b-metric space with a constant s 1 . If T : U U satisfies the inequality:
d ( T u , T v ) κ 1   d ( u , v ) + κ 2   d ( u , T u ) + κ 3   d ( v , T v ) + κ 4 [ d ( v , T u ) + d ( u , T v ) ] ,
where κ i 0 , for i = 1 , 2 , 3 , 4 and
κ 1 + κ 2 + κ 3 + 2 s κ 4 < 1 ,
then T has a unique fixed point.
Theorem 6
([23]). Let ( U , d ) be a complete b-metric space with a constant s 1 . If T : U U satisfies the inequality:
d ( T u , T v ) κ 1   d ( u , v ) + κ 2 [ d ( u , T u ) +   d ( v , T v ) ] ,
for all u , v U , where κ 1 , κ 2 [ 0 , 1 3 ) such that κ 2 < min { 1 3 , 1 s } , then T has a unique fixed point.
If s = 1 , then ( U , d ) is a metric space and condition (9) implies:
d ( T u , T v ) k max { d ( u , v ) , d ( u , T u ) , d ( v , T v ) , d ( v , T u ) + d ( u , T v ) 2 } ,
where κ 1 + κ 2 + κ 3 + 2 κ 4 < 1 . With Equation (11), we recover the well-known result for generalized Ciric’s contraction mapping in the metric space and obtain a unique fixed point.
In 1969, Nadler [24] generalized the single-valued Banach contraction principle into a multi-valued contraction principle. This mapping has been carried out for a complete metric space ( U , d ) by using subsets of U that are nonempty closed and bounded. There are number of generalizations for Nadler’s fixed point theorem (see [25,26,27]). In [28], the author introduced the given below quasi-contraction mapping and proved an existence and uniqueness fixed point theorem.
A mapping T : U U on a metric space ( U , d ) is called a quasi-contraction, if there exists q < 1 such that for all u , v U ,
d ( T u , T v ) q max { d ( u , v ) , d ( u , T u ) , d ( v , T v ) , d ( u , T v ) , d ( v , T u ) } .
Amini-Harandi in [29] introduced the concept of q-multi-valued quasi-contractions and derived a fixed point theorem, which generalized Ciric’s theorem [28].
A multi-valued map T : U CB ( U ) on a metric space ( U , d ) is called a q-multi-valued quasi-contraction, if there exists q < 1 such that for all u , v U ,
d ( T u , T v ) q max { d ( u , v ) , d ( u , T u ) , d ( v , T v ) , d ( u , T v ) , d ( v , T u ) } ,
where CB ( U ) denotes the non-empty closed and bounded subsets of U . In [30], Aydi et al. established the following result, which generalized Theorem 2.2 from [29] and Ciric’s result [28].
Theorem 7
([30]). Let ( U , d ) be a complete b-metric space. Suppose that T is a q-multi-valued quasi-contraction and q < 1 s 2 + s , then T has a fixed point in U .
In 2017, Kamran et al. generalized the structure of a b-metric space and called it, an extended b-metric space. Thereafter, a number of research articles have appeared, which generalize the contraction principle of Banach in extended b-metric spaces for both single and multi-valued mappings (see [31,32,33,34,35,36,37]). In this paper, we illustrate a method (see Lemma 3), to generalize a number of fixed point results of single-valued and multi-valued mappings in the structure of extended b-metric spaces.
Definition 2
([38]). Let U be a nonempty set and ϕ : U × U [ 1 , ) . A function d ϕ : U × U [ 0 , ) is called an extended b-metric, if for all u 1 , u 2 , u 3 U , it satisfies:
( d 1 )
d ϕ ( u 1 , u 2 ) = 0 iff u 1 = u 2 ;
( d 2 )
d ϕ ( u 1 , u 2 ) = d ϕ ( u 2 , u 1 ) ;
( d 3 )
d ϕ ( u 1 , u 3 ) ϕ ( u 1 , u 3 ) [ d ϕ ( u 1 , u 2 ) + d ϕ ( u 2 , u 3 ) ] .
The pair ( U , d ϕ ) is called an extended b-metric space.
Example 1.
Let U = [ 0 , ) . Define d ϕ : U × U [ 0 , ) by:
d ϕ ( u , v ) = 0 , i f   u = v ; 3 , i f   u   o r   v { 1 , 2 } , u v ; 5 , i f   u v { 1 , 2 } ; 1 , o t h e r w i s e .
Then ( U , d ϕ ) is an extended b-metric space, where ϕ : U × U [ 1 , ) is defined by:
ϕ ( u , v ) = u + v + 1 ,
for all u , v U .
Remark 1.
Every b-metric space is an extended b-metric space with constant function ϕ ( u 1 , u 2 ) = s , for s 1 , but its converse is not true in general.
Definition 3
([35]). Let ( U , d ϕ ) be an extended b-metric space, where ϕ : U × U [ 1 , ) is bounded. Then for all A , B CB ( U ) , where CB ( U ) denotes the family of all nonempty closed and bounded subsets of U , the Hausdorff–Pompieu metric on CB ( U ) induced by d ϕ is defined by:
H Φ ( A , B ) = max { sup a A d ϕ ( a , B ) , sup b B d ϕ ( b , A ) } ,
where for every a A , d ϕ ( a , B ) = inf { d ϕ ( a , b ) : b B } and Φ : CB ( U ) × CB ( U ) [ 1 , ) is such that:
Φ ( A , B ) = sup { ϕ ( a , b ) : a A , b B } .
Theorem 8
([31]). Let ( U , d ϕ ) be an extended b-metric space. Then ( CB ( U ) , H Φ ) is an extended Hausdorff–Pompieu b-metric space.
Lemma 1
([39]). Every sequence { u n } n N of elements from an extended b-metric space ( U , d ϕ ) , having the property that for every n N , there exists γ [ 0 , 1 ) such that:
d ϕ ( u n + 1 , u n ) γ d ϕ ( u n , u n 1 )
where for each u 0 U , lim n , m ϕ ( u n , u m ) < 1 γ . Then { u n } n = 0 is a Cauchy sequence.
Definition 4.
Let U be any set and T : U CB ( U ) be a multi-valued map. For any point u 0 U , the sequence { u n } n = 0 given by:
u n + 1 T u n , n = 0 , 1 , 2 ,
is called an iterative sequence with initial point u 0 .

2. Main Results

Definition 5.
Let ( U , d ϕ ) be an extended b-metric space. A function T : U CB ( U ) is called continuous, if for every sequence { u n } n N and { v n } n N belongs to U and u , v U such that lim n u n = u , lim n v n = v and v n T u n . We have v T u .
Definition 6.
An extended b-metric space ( U , d ϕ ) is called ∗-continuous, if for every A CB ( U ) , { u n } n N U and u U such that lim n u n = u . We have lim n d ϕ ( u n , A ) = d ϕ ( u , A ) .
Remark 2.
Note that ∗- continuity of d ϕ is stronger than continuity of d ϕ in first variable.
Lemma 2.
For every sequence { u n } n N of elements from an extended b-metric space ( U , d ϕ ) , the inequality
d ϕ ( u 0 , u k ) i = 0 k 1 d ϕ ( u i , u i + 1 ) l = 0 i ϕ ( u l , u k ) ,
is valid for every k N .
Proof. 
From the triangle inequality for k > 0 , we haveL
d ϕ ( u 0 , u k ) ϕ ( u 0 , u k ) d ϕ ( u 0 , u 1 ) + ϕ ( u 0 , u k ) ϕ ( u 1 , u k ) d ϕ ( u 1 , u 2 ) + + ϕ ( u 0 , u k ) ϕ ( u 1 , u k ) ϕ ( u k 1 , u k ) d ϕ ( u k 1 , u k ) .
This implies that:
d ϕ ( u 0 , u k ) i = 0 k 1 d ϕ ( u i , u i + 1 ) l = 0 i ϕ ( u l , u k ) .
Lemma 3.
Every sequence { u n } n N of elements from an extended b-metric space ( U , d ϕ ) , having the property that there exists γ [ 0 , 1 ) such that:
d ϕ ( u n + 1 , u n ) γ d ϕ ( u n , u n 1 )
for every n N is Cauchy.
Proof. 
First, by successively applying (15), we get:
d ϕ ( u n , u n + 1 ) γ n d ϕ ( u 0 , u 1 ) ,
for every n N . Then by the Lemma 3, for all m , k N , we have:
d ϕ ( u m , u m + k ) n = m m + k 1 d ϕ ( u n , u n + 1 ) l = 0 n ϕ ( u l , u m + k )
d ϕ ( u m , u m + k ) d ϕ ( u 0 , u 1 ) n = m m + k 1 γ n l = 0 n ϕ ( u l , u m + k )
d ϕ ( u m , u m + k ) d ϕ ( u 0 , u 1 ) n = 0 k 1 γ n + m l = 0 n + m ϕ ( u l , u m + k )
d ϕ ( u m , u m + k ) γ m d ϕ ( u 0 , u 1 ) n = 0 k 1 γ n l = 0 n + m ϕ ( u l , u m + k )
d ϕ ( u m , u m + k ) γ m d ϕ ( u 0 , u 1 ) n = 0 k 1 γ log γ l = 0 n + m ϕ ( u l , u m + k ) + n .
Now let us take two cases for log γ l = 0 n + m ϕ ( u l , u m + k ) + n .
Case 1:
If l = 0 n + m ϕ ( u l , u m + k ) is finite, let us say M , then lim n log γ M + n = . Hence the series n = 0 k 1 γ log γ M + n is convergent.
Case 2:
If l = 0 n + m ϕ ( u l , u m + k ) is infinite, then lim n log γ l = 0 n + m ϕ ( u l , u m + k ) = , so there exist n 0 N such that log γ l = 0 n + m ϕ ( u l , u m + k ) > M , i.e.,
γ log γ l = 0 n + m ϕ ( u l , u m + k ) + n γ M · γ n , f o r e a c h n N , n n 0 .
Hence the series n = 0 k 1 γ log γ l = 0 n + m ϕ ( u l , u m + k ) + n is convergent. In both cases denoting by S the sum of this series, we come to the conclusion that:
d ϕ ( u m , u m + k ) γ m d ϕ ( u 0 , u 1 ) S ,
for all m , k N . Consequently, as lim m γ m = 0 , we conclude that { u m } m N is a Cauchy sequence. □
Remark 3.
Lemma 3 shows that the condition on ϕ in Lemma 1 corresponding to that for each u 0 U , lim n , m ϕ ( u n , u m ) < 1 γ , can be avoided. Therefore, Lemma 3 generalizes Lemma 1, which is the basis of the results from [36].
Lemma 4.
Let A , B CB ( U ) , then for every η > 0 and b B there exists a A such that:
d ϕ ( a , b ) H Φ ( A , B ) + η .
Proof. 
By definition of Hausdorff metric, for A , B CB ( U ) and for any b Y , we have:
d ϕ ( A , b ) H Φ ( A , B ) .
By the definition of infimum, we can let { a n } be a sequence in A such that:
d ϕ ( b , a n ) < d ϕ ( b , A ) + η , w h e r e η > 0 .
We know that A is closed and bounded, so there exists a A such that a n a . Therefore, by (19), we have:
d ϕ ( a , b ) < d ϕ ( A , b ) + η H Φ ( A , B ) + η .
Theorem 9.
Let ( U , d ϕ ) be a complete extended b-metric space with ϕ : U × U [ 1 , ) . If T : U U satisfies the inequality:
d ϕ ( T u , T v ) κ 1 d ϕ ( u , v ) + κ 2 d ϕ ( u , T u ) + κ 3 d ϕ ( v , T v ) + κ 4 [ d ϕ ( v , T u ) + d ϕ ( u , T v ) ] ,
where κ i 0 , for i = 1 , , 4 and for each u 0 U ,
κ 1 + κ 2 + κ 3 + 2 κ 4 lim n , m ϕ ( u n , u m ) < 1 ,
then T has a fixed point.
Proof. 
Let us choose an arbitrary u 0 U and define the iterative sequence { u n } n = 0 by u n = T u n 1 = T n 1 u 0 for all n 1 . If u n = u n 1 , then u n is a fixed point of T and the proof holds. So we suppose u n u n 1 , ∀ n 1 . Then from Equation (20), we have:
d ϕ ( T u n , T u n 1 ) κ 1 d ϕ ( u n , u n 1 ) + κ 2 d ϕ ( u n , T u n ) + κ 3 d ϕ ( u n 1 , T u n 1 ) + κ 4 [ d ϕ ( u n 1 , T u n ) + d ϕ ( u n , T u n 1 ) ] .
From the triangle inequality, we get:
d ϕ ( T u n , T u n 1 ) κ 1 d ϕ ( u n , u n 1 ) + κ 2 d ϕ ( u n , T u n ) + κ 3 d ϕ ( u n 1 , T u n 1 ) + κ 4 ϕ ( u n 1 , u n + 1 ) [ d ϕ ( u n 1 , u n ) + d ϕ ( u n , u n + 1 ) ] .
This implies that:
d ϕ ( u n + 1 , u n ) ( κ 1 + κ 3 + κ 4 ϕ ( u n 1 , u n + 1 ) ) d ϕ ( u n , u n 1 ) + ( κ 2 + κ 4 ϕ ( u n 1 , u n + 1 ) ) d ϕ ( u n , u n + 1 ) .
Similarly,
d ϕ ( u n , u n + 1 ) ( κ 1 + κ 2 + κ 4 ϕ ( u n 1 , u n + 1 ) ) d ϕ ( u n , u n 1 ) + ( κ 3 + κ 4 ϕ ( u n 1 , u n + 1 ) ) d ϕ ( u n , u n + 1 ) .
By adding Equations (21) and (22), we get:
d ϕ ( u n + 1 , u n ) η d ϕ ( u n , u n 1 ) .
where,
η = 2 κ 1 + κ 2 + κ 3 + 2 κ 4 ϕ ( u n 1 , u n + 1 ) 2 κ 2 κ 3 2 κ 4 ϕ ( u n 1 , u n + 1 ) .
Since κ 1 + κ 2 + κ 3 + 2 κ 4 lim n , m ϕ ( u n , u m ) < 1 , multiply by 2,
2 κ 1 + 2 κ 2 + 2 κ 3 + 4 κ 4 lim n , m ϕ ( u n , u m ) < 2 ,
2 κ 1 + 2 κ 2 + 2 κ 3 + ( 2 κ 4 lim n , m ϕ ( u n , u m ) + 2 κ 4 lim n , m ϕ ( u n , u m ) ) < 2 .
This implies that:
2 κ 1 + κ 2 + κ 3 + 2 κ 4 lim n , m ϕ ( u n , u m ) < 2 κ 2 κ 3 2 κ 4 lim n , m ϕ ( u n , u m ) .
η < 1 . Hence from Lemma 3, { u n } n = 0 is a Cauchy sequence. As U is complete, therefore there exists u U such that lim n u n = u . Next, we will show that u is a fixed point of T. From the triangle inequality and Equation (20), we have:
d ϕ ( u , T u ) ϕ ( u , T u ) [ d ϕ ( u , u n + 1 ) + d ϕ ( u n + 1 , T u ) ] ϕ ( u , T u ) [ d ϕ ( u , u n + 1 ) + κ 1 d ϕ ( u n , u ) + κ 2 d ϕ ( u n , u n + 1 ) + κ 3 d ϕ ( u , T u ) + κ 4 [ d ϕ ( u n , T u ) + d ϕ ( u , u n + 1 ) ] ϕ ( u , T u ) [ d ϕ ( u , u n + 1 ) + κ 1 d ϕ ( u n , u ) + κ 2 d ϕ ( u n , u n + 1 ) + κ 3 d ϕ ( u , T u ) + κ 4 d ϕ ( u , u n + 1 ) + κ 4 ϕ ( u n , T u ) [ d ϕ ( u n , u ) + d ϕ ( u , T u ) ] ϕ ( u , T u ) [ ( 1 + κ 4 ) d ϕ ( u , u n + 1 ) + ( κ 1 + κ 4 ϕ ( u n , T u ) ) d ϕ ( u , u n ) κ 2 d ϕ ( u n , u n + 1 ) + ( κ 3 + κ 4 ϕ ( u n , T u ) ) d ϕ ( u , T u ) ] . .
So,
( 1 κ 3 κ 4 ϕ ( u n , T u ) ) d ϕ ( u , T u ) ϕ ( u , T u ) [ ( 1 + κ 4 ) d ϕ ( u , u n + 1 ) + ( κ 1 + κ 4 ϕ ( u n , T u ) ) d ϕ ( u , u n ) + κ 2 d ϕ ( u n , u n + 1 ) ] .
Similarly,
( 1 κ 2 κ 4 ϕ ( u n , T u ) ) d ϕ ( u , T u ) ϕ ( u , T u ) [ ( 1 + κ 4 ) d ϕ ( u , u n + 1 ) + ( κ 1 + κ 4 ϕ ( u n , T u ) ) d ϕ ( u , u n ) + κ 3 d ϕ ( u n , u n + 1 ) ] .
By adding Equations (24) and (25), we have:
( 2 κ 2 κ 3 2 κ 4 ϕ ( u n , T u ) ) d ϕ ( u , T u ) ϕ ( u , T u ) [ 2 ( 1 + κ 4 ) d ϕ ( u , u n + 1 ) + 2 ( κ 1 + κ 4 ϕ ( u n , T u ) ) d ϕ ( u , u n ) + ( κ 2 + κ 3 ) d ϕ ( u n , u n + 1 ) ] 0 ,
as n . This implies that:
( 2 κ 2 κ 3 2 κ 4 ϕ ( u n , T u ) ) d ϕ ( u , T u ) 0 .
Since ( 2 κ 2 κ 3 2 κ 4 ϕ ( u n , T u ) ) > 0 , we get d ϕ ( u , T u ) = 0 , i.e., T u = u . Now, we show that u is the unique fixed point of T. Assume that u is another fixed point of T, then we have T u = u . Also,
d ϕ ( u , u ) = d ϕ ( T u , T u ) κ 1 d ϕ ( u , u ) + κ 2 d ϕ ( u , T u ) + κ 3 d ϕ ( u , T u ) + κ 4 [ d ϕ ( u , T u ) + d ϕ ( u , T u ) κ 1 d ϕ ( u , u ) + κ 2 d ϕ ( u , u ) + κ 3 d ϕ ( u , u ) + κ 4 [ d ϕ ( u , u ) + d ϕ ( u , u ) ( κ 1 + 2 κ 4 ) d ϕ ( u , u ) .
This implies that:
( 1 κ 1 2 κ 4 ) d ϕ ( u , u ) 0 .
As κ 1 + κ 2 + κ 3 + 2 κ 4 κ 1 + κ 2 + κ 3 + 2 κ 4 lim n , m ϕ ( u n , u m ) < 1 . Therefore ( 1 κ 1 2 κ 4 ) > 0 , and d ϕ ( u , u ) = 0 , i.e., u = u . Hence T has a unique fixed point in U .
Remark 4.
From the symmetry of the distance function d ϕ , it is easy to prove similar to that done in [4,22] that κ 2 = κ 3 . Thus the inequality (20) is equivalent to the following inequality:
d ϕ ( T u , T v ) κ 1 d ϕ ( u , v ) + κ 2 [ d ϕ ( u , T u ) + d ϕ ( v , T v ) ] + κ 4 [ d ϕ ( v , T u ) + d ϕ ( u , T v ) ] ,
where κ 1 , κ 2 , κ 4 0 such that κ 1 + 2 κ 2 + 2 κ 4 lim n , m ϕ ( u n , u m ) < 1 . If κ 1 = κ 2 = 0 and κ 4 [ 0 , 1 2 ) in inequality (26), we obtain generalization of Chatterjea’s map [14] in extended b-metric space.
Remark 5.
Theorem 9 generalizes and improves Theorem 1.5 of [23] and therefore Theorem 2.1 of [20]. Moreover, Theorem 9 generalizes and improves Theorem 3.7 from [40], that is, Theorem 2.19 from [41].
Theorem 10.
Let ( U , d ϕ ) be a complete extended b-metric space with ϕ : U × U [ 1 , ) . If T : U U satisfies the inequality:
d ϕ ( T u , T v ) κ 1 d ϕ ( u , v ) + κ 2 [ d ϕ ( u , T u ) + d ϕ ( v , T v ) ] ,
for each u , v U , where κ 1 , κ 2 [ 0 , 1 3 ) . Moreover for each u 0 U ,
lim n , m ϕ ( u n , u m ) κ 2 < 1 ,
then T has a unique fixed point.
Proof. 
Let us choose an arbitrary u 0 U and define the iterative sequence { u n } n = 0 by u n = T u n 1 = T n 1 u 0 for all n 1 . If u n = u n 1 , then u n is a fixed point of T and the proof holds. So we suppose u n u n 1 , ∀ n 1 . Then from Equation (27), we have:
d ϕ ( T u n , T u n 1 ) κ 1 d ϕ ( u n , u n 1 ) + κ 2 [ d ϕ ( u n 1 , T u n 1 ) + d ϕ ( u n , T u n ) ] .
So,
( 1 κ 2 ) d ϕ ( u n + 1 , u n ) ( κ 1 + κ 4 ) d ϕ ( u n , u n 1 ) .
d ϕ ( u n , u n + 1 ) κ 1 + κ 4 1 κ 4 d ϕ ( u n , u n 1 ) .
This implies that:
d ϕ ( u n + 1 , u n ) η d ϕ ( u n , u n 1 ) .
where,
η = κ 1 + κ 4 1 κ 4 .
Since κ 1 , κ 2 [ 0 , 1 3 ) , so η < 1 , from Lemma 3, { u n } n = 0 is a Cauchy sequence. As U is complete, therefore there exists u U such that lim n u n = u . Next, we will show that u is a fixed point of T in U . From the triangle inequality and Equation (27), we have:
d ϕ ( u , T u ) ϕ ( u , T u ) [ d ϕ ( u , u n + 1 ) + d ϕ ( u n + 1 , T u ) ] ϕ ( u , T u ) [ d ϕ ( u , u n + 1 ) + κ 1 d ϕ ( u n , u ) + κ 2 [ d ϕ ( u n , u n + 1 ) + d ϕ ( u , T u ) ] . .
So,
( 1 κ 2 ϕ ( u , T u ) ) d ϕ ( u , T u ) 0 ,
as n . Since lim n , m ϕ ( u n , u m ) κ 2 < 1 , we get ( 1 κ 2 ϕ ( u , T u ) ) > 0 , and so d ϕ ( u , T u ) = 0 , i.e., T u = u . We will show that u is the unique fixed point of T. Assume that u is another fixed point of T, then we have T u = u . Again,
d ϕ ( u , u ) = d ϕ ( T u , T u ) κ 1 d ϕ ( u , u ) + κ 2 [ d ϕ ( u , T u ) + d ϕ ( u , T u ) ] + κ 1 d ϕ ( u , u ) < d ϕ ( u , u ) ,
which is a contradiction. Hence T has a unique fixed point in U .
Remark 6.
Theorem 10 generalizes Theorem 1.2 of [20].
For u , v U and c , d [ 0 , 1 ] , we will use the following notation:
N c 1 , c 2 ( u , v ) = max { d ϕ ( u , v ) , c 1 d ϕ ( u , T u ) , c 1 d ϕ ( v , T v ) , c 2 2 ( d ϕ ( u , T v ) + d ϕ ( v , T u ) ) } .
Theorem 11.
Let ( U , d ϕ ) be an extended b-metric space. Let T : U CB ( U ) be a multi-valued mapping having the property that there exist c 1 , c 2 [ 0 , 1 ] and η [ 0 , 1 ) such that:
(i)
For each u 0 U , lim n , m η c 2 ϕ ( u n , u m ) < 1 , here u n = T n u 0 ,
( i i )
H Φ ( T u , T v ) η N c 1 , c 2 ( u , v ) for all u , v U .
Then for every u 0 U , there exist γ [ 0 , 1 ) and a sequence { u n } n N of iterates from U such that for every n N ,
d ϕ ( u n , u n + 1 ) γ d ϕ ( u n 1 , u n ) .
Proof. 
Let us choose an arbitrary u 0 U and u 1 T u 0 . Consider:
γ = max { η , η c 2 ϕ ( u n 1 , u n + 1 ) 2 η c 2 ϕ ( u n 1 , u n + 1 ) } .
Clearly, γ < 1 . If u 1 = u 0 , then for every n N , the sequence { u n } n N given by u n = u 0 satisfies Equation(29). Since:
d ϕ ( u 1 , T u 1 ) ) d ϕ ( T u 0 , T u 1 ) H Φ ( T u 0 , T u 1 ) η N c 1 , c 2 ( u 0 , u 1 ) .
there exists u 2 T u 1 such that d ϕ ( u 1 , u 2 ) η N c 1 , c 2 ( u 0 , u 1 ) . If u 2 = u 1 , then for every n N , n 1 , the sequence { u n } n N given by u n = u 1 satisfies Equation (29). By repeating this process, we obtain a sequence { u n } n N of elements from U such that u n + 1 T u n and 0 < d ϕ ( u n , u n + 1 ) η N c 1 , c 2 ( u n 1 , u n ) for every n N , n 1 . Then we have:
0 < d ϕ ( u n , u n + 1 ) η N c 1 , c 2 ( u n 1 , u n ) η max { d ϕ ( u n 1 , u n ) , c 1 d ϕ ( u n 1 , T u n 1 ) , c 1 d ϕ ( u n , T u n ) , c 2 2 ( d ϕ ( u n 1 , T u n ) + d ϕ ( u n , T u n 1 ) ) } η max { d ϕ ( u n 1 , u n ) , c 1 d ϕ ( u n 1 , u n ) , c 1 d ϕ ( u n , u n + 1 ) , c 2 2 ( d ϕ ( u n 1 , u n + 1 ) ) }
η max { d ϕ ( u n 1 , u n ) , c 1 d ϕ ( u n 1 , u n ) , c 1 d ϕ ( u n , u n + 1 ) , c 2 ϕ ( u n 1 , u n + 1 ) 2 ( d ϕ ( u n 1 , u n ) + d ϕ ( u n , u n + 1 ) ) } ,
for every n N . If we take:
max { d ϕ ( u n 1 , u n ) , c 1 d ϕ ( u n 1 , u n ) , c 1 d ϕ ( u n , u n + 1 ) , c 2 ϕ ( u n 1 , u n + 1 ) 2 ( d ϕ ( u n 1 , u n ) + d ϕ ( u n , u n + 1 ) ) } = c 1 d ϕ ( u n , u n + 1 ) ,
then from Equations (30) and (31), 0 < d ( u n , u n + 1 ) η c 1 d ϕ ( u n , u n + 1 ) < η d ϕ ( u n , u n + 1 ) . As η < 1 , so we obtain the contradiction. Therefore, we have:
d ϕ ( u n , u n + 1 ) η N c 1 , c 2 ( u n 1 , u n ) η max { d ϕ ( u n 1 , u n ) , c 2 ϕ ( u n 1 , u n + 1 ) 2 ( d ϕ ( u n 1 , u n ) + d ϕ ( u n , u n + 1 ) ) } .
Consequently, d ϕ ( u n , u n + 1 ) η d ϕ ( u n 1 , u n ) or
d ϕ ( u n , u n + 1 ) η c 2 ϕ ( u n 1 , u n + 1 ) 2 ( d ϕ ( u n 1 , u n ) + d ϕ ( u n , u n + 1 ) ) .
This implies that d ϕ ( u n , u n + 1 ) η d ϕ ( u n 1 , u n ) or
d ϕ ( u n , u n + 1 ) η c 2 ϕ ( u n 1 , u n + 1 ) 2 η c 2 ϕ ( u n 1 , u n + 1 ) d ϕ ( u n 1 , u n ) ,
for every n N . Thus,
d ϕ ( u n , u n + 1 ) max { η , η c 2 ϕ ( u n 1 , u n + 1 ) 2 η c 2 ϕ ( u n 1 , u n + 1 ) } d ϕ ( u n 1 , u n ) ,
i.e.,
d ϕ ( u n , u n + 1 ) γ d ϕ ( u n 1 , u n ) .
Thus, the sequence { u n } n N satisfies Equation(29). Hence from Lemma 3, we conclude that { u n } n N is Cauchy sequence. □
Theorem 12.
Let ( U , d ϕ ) be a complete extended b-metric space. Let T : U CB ( U ) be a multi-valued mapping having the property that there exist c 1 , c 2 [ 0 , 1 ] and η [ 0 , 1 ) such that:
(i)
For each u 0 U , lim n , m η c 2 ϕ ( u n , u m ) < 1 , here u n = T n u 0 ,
( i i )
H Φ ( T u , T v ) η N c 1 , c 2 ( u , v ) for all u , v U ,
( i i i )
T is continuous.
Then T has a fixed point in U .
Proof. 
From Theorem 11, by taking in account condition ( i ) and ( i i ) , we conclude that { u n } n N is a Cauchy sequence such that:
u n + 1 T u n ,
for every n N . As U is complete, so there exists u U such that lim n u n = u . From inequality (3), by the continuity of T, it follows that:
u n + 1 = T u n T u , a s n .
Therefore, u T u . Hence T has a fixed point in U .
Theorem 13.
Let ( U , d ϕ ) be a complete extended b-metric space. Let T : U CB ( U ) be a multi-valued mapping having the property that there exist c 1 , c 2 [ 0 , 1 ] and η [ 0 , 1 ) such that:
(i)
For each u 0 U lim n , m η c 2 ϕ ( u n , u m ) < 1 , here u n = T n u 0 ,
( i i )
H Φ ( T u , T v ) η N c 1 , c 2 ( u , v ) for all u , v U ,
( i i i )
T is ∗-continuous.
Then T has a fixed point in U .
Proof. 
From Theorem 3, by taking in account condition ( i ) and ( i i ) , we conclude that { u n } n N is a Cauchy sequence such that:
u n + 1 T u n ,
for every n N . As U is complete, so there exists u U such that lim n u n = u . Then we have:
d ϕ ( u n + 1 , T u ) = d ϕ ( T u n , T u ) H Φ ( T u n , T u ) η N c 1 , c 2 ( u n , u ) η max { d ϕ ( u n , u ) , c 1 d ϕ ( u n , T u n ) , c 1 d ϕ ( u , T u ) , c 2 2 ( d ϕ ( u n , T u ) + d ϕ ( u , T u n ) ) } η max { d ϕ ( u n , u ) , c 1 d ϕ ( u n , u n + 1 ) , c 1 d ϕ ( u , T u ) , c 2 2 ( d ϕ ( u n , T u ) + d ϕ ( u , T u n ) ) }
η max { d ϕ ( u n , u ) , c 1 d ϕ ( u n , u n + 1 ) , c 1 d ϕ ( u , T u ) , c 2 2 ( ϕ ( u n , T u ) ( d ϕ ( u n , u ) + d ϕ ( u , T u ) ) ) + d ϕ ( u , u n + 1 ) } ,
for every n N . Since lim n u n = u , lim n d ϕ ( u n , u n + 1 ) = 0 . Then lim n d ϕ ( u n + 1 , T u ) = d ϕ ( u , T u ) . Therefore, by taking limit n in Equations (34) and (35), we obtain:
d ϕ ( u , T u ) η N c 1 , c 2 ( u n , u ) η max { 0 , c 1 d ϕ ( u , T u ) , c 2 lim n ϕ ( u n , T u ) 2 d ϕ ( u , T u ) } max { η c 1 , η η c 2 lim n ϕ ( u n , T u ) 2 } d ϕ ( u , T u ) .
As max { η c 1 , η η c 2 lim n ϕ ( u n , T u ) 2 } < 1 , so from above inequality d ϕ ( u , T u ) < d ϕ ( u , T u ) , which is impossible, therefore d ϕ ( u , T u ) = 0 i.e., u T u . Hence T has a fixed point in U .
Theorem 14.
A multi-valued mapping T : U CB ( U ) has a fixed point in a complete extended b-metric space ( U , d ϕ ) , if it satisfies the following two axioms:
(i)
There exist c 1 , c 2 [ 0 , 1 ] and η [ 0 , 1 ) such that H Φ ( T u , T v ) η N c 1 , c 2 ( u , v ) for all u , v U ,
( i i )
For each u 0 U , max { η c 1 lim n , m ϕ ( u n , u m ) , η c 2 lim n , m ϕ ( u n , u m ) } < 1 , here u n = T n u 0 .
Proof. 
From Theorem 11, by taking in account condition ( i ) and ( i i ) , we conclude that { u n } n N is a Cauchy sequence such that:
u n + 1 T u n ,
for every n N . As U is complete, so there exists u U such that lim n u n = u . Then for every n N , we have:
d ϕ ( u n + 1 , T u ) = d ϕ ( T u n , T u ) H Φ ( T u n , T u ) η N c 1 , c 2 ( u n , u ) η max { d ϕ ( u n , u ) , c 1 d ϕ ( u n , T u n ) , c 1 d ϕ ( u , T u ) , c 2 2 ( d ϕ ( u n , T u ) + d ϕ ( u , T u n ) ) } η max { d ϕ ( u n , u ) , c 1 d ϕ ( u n , u n + 1 ) , c 1 d ϕ ( u , T u ) , c 2 2 ( d ϕ ( u n , T u ) + d ϕ ( u , T u n ) ) }
η max { d ϕ ( u n , u ) , c 1 d ϕ ( u n , u n + 1 ) , c 1 d ϕ ( u , T u ) , c 2 2 ( ϕ ( u n , T u ) ( d ϕ ( u n , u ) + d ϕ ( u , T u ) ) ) + d ϕ ( u , u n + 1 ) } .
Now, we will take two cases:
Case (i):
If d ϕ ( u , T u ) lim n sup d ϕ ( u n , T u ) , then there exists a subsequence { u n l } n N of { u n } such that d ϕ ( u , T u ) lim l d ϕ ( u n l + 1 , T u ) , so for each ϵ > 0 , ∃ l ϵ N such that for every l N , l l ϵ , we have:
d ϕ ( u , T u ) ϵ d ϕ ( u n l + 1 , T u ) η max { d ϕ ( u n l , u ) , c 1 d ϕ ( u n l , u n l + 1 ) , c 1 d ϕ ( u , T u ) , c 2 2 ( d ϕ ( u n l , T u ) + d ϕ ( u , u n l + 1 ) ) }
η max { d ϕ ( u n l , u ) , c 1 d ϕ ( u n l , u n l + 1 ) , c 1 d ϕ ( u , T u ) , c 2 2 ( ϕ ( u n l , T u ) ( d ϕ ( u n l , u ) + d ϕ ( u , T u ) ) + d ϕ ( u , u n l + 1 ) } .
Since lim l u n l = u , lim l d ϕ ( u n l , u n l + 1 ) = 0 . Therefore, by taking limit l in Equations (39) and (40), we obtain:
d ϕ ( u , T u ) ϵ η max { 0 , c 1 d ϕ ( u , T u ) , c 2 lim l ϕ ( u n l , T u ) 2 d ϕ ( u , T u ) }       η max { c 1 , η c 2 lim l ϕ ( u n l , T u ) 2 } d ϕ ( u , T u ) ,
for every ϵ > 0 . Thus,
d ϕ ( u , T u ) max { η c 1 , η η c 2 lim l ϕ ( u n l , T u ) 2 } d ϕ ( u , T u ) .
As max { η c 1 , η η c 2 lim l ϕ ( u n l , T u ) 2 } < 1 , so from above inequality d ϕ ( u , T u ) < d ϕ ( u , T u ) , which is impossible, therefore d ϕ ( u , T u ) = 0 , i.e., u T u . Hence T has a fixed point in U .
Case (ii):
If d ϕ ( u , T u ) > lim n sup d ϕ ( u n , T u ) , then there exists N 0 N such that for every n N 0 , we have
d ϕ ( u n l , T u ) d ϕ ( u , T u ) .
From the triangle inequality, d ϕ ( u , T u ) ϕ ( u , T u ) ( d ϕ ( u , u n + 1 ) + d ϕ ( u n + 1 , T u ) ) , we obtain:
d ϕ ( u , T u ) ϕ ( u , T u ) ( d ϕ ( u , u n + 1 ) ϕ ( u , T u ) d ϕ ( u n + 1 , T u ) ϕ ( u , T u ) η max { d ϕ ( u n , u ) , c 1 d ϕ ( u n , u n + 1 ) , c 1 d ϕ ( u , T u ) , c 2 2 ( d ϕ ( u n , T u ) + d ϕ ( u , u n + 1 ) ) }
η max { d ϕ ( u n , u ) , c 1 d ϕ ( u n , u n + 1 ) , c 1 d ϕ ( u , T u ) , c 2 2 ( ϕ ( u n , T u ) ( d ϕ ( u n , u ) + d ϕ ( u , T u ) ) ) + d ϕ ( u , u n + 1 ) } .
Since lim n u n = u , lim n d ϕ ( u n , u n + 1 ) = 0 . Therefore by taking limit n in Equations (41) and (42), we obtain:
d ϕ ( u , T u ) ϕ ( u , T u ) d ϕ ( u , u n + 1 ) ϕ ( u , T u ) η max { 0 , c 1 d ϕ ( u , T u ) , c 2 lim n ϕ ( u n , T u ) 2 d ϕ ( u , T u ) ϕ ( u , T u ) max { η c 1 , η η c 2 lim n ϕ ( u n , T u ) 2 } d ϕ ( u , T u ) ,
from condition ( i i ) , since ϕ ( u , T u ) max { η c 1 , η η c 2 lim n ϕ ( u n , T u ) 2 } < 1 , so from Equation (43), d ϕ ( u , T u ) < d ϕ ( u , T u ) , which is impossible, therefore d ϕ ( u , T u ) = 0 , i.e., u T u . Hence T has a fixed point in U .
Remark 7.
(i)
For c 1 , c 2 = 0 in Theorem 12, we obtain Nadler’s contraction principle for multi valued-mappings, i.e., Theorem 5 from [24].
(ii)
Theorem 14 generalizes Theorems 12 and 13;
(ii)
Theorem 14 generalizes Theorem 3.3 from [42], which generalizes Theorem 7 of [30]. Also, Theorem 7, which is a generalization of Theorem 2.2 from [29], improves Theorem 3.3 from [43], Corollary 3.3 from [5], and Theorem 1 from [28].
Example 2.
Let U = { 1 2 , 1 4 , , 1 2 n , } { 0 , 1 } , d ϕ ( u 1 , u 2 ) = ( u 1 u 2 ) 2 , for u 1 , u 2 U , where ϕ : U × U [ 1 , ) define by ϕ ( u 1 , u 2 ) = u 1 + u 2 + 1 . Then U is a complete extended b-metric space. Define mapping T : U CB ( U ) as
T u = { 1 2 n + 1 } , u = 1 2 n , n = 0 , 1 , 2 , u , u = 0 .
Hence T is continuous. Since N c 1 , c 2 ( 1 2 n , 0 ) = 1 2 2 n , for all c 1 , c 2 [ 0 , 1 ] , we get:
H Φ T 1 2 n , T ( 0 ) = 1 2 2 n + 2 1 2 2 n + 1 1 2 N c 1 , c 2 1 2 n , 0 ,
where η = 1 2 . Also for each u 0 U , lim n , m η c 2 ϕ ( u n , u m ) < 1 . Clearly, it satisfies all the conditions of Theorem 12, and so there exists a fixed point.
Example 3.
Let U = [ 0 , ) . Define d ϕ ( u 1 , u 2 ) = ( u 1 u 2 ) 2 , for u 1 , u 2 U , where ϕ : U × U [ 1 , ) , where ϕ ( u 1 , u 2 ) = u 1 + u 2 + 2 . Then U is a complete extended b-metric space. Define mapping T : U CB ( U ) as T u = { 8 9 u } for every u U . Note that Theorem 14 is applicable by taking c 1 = c 2 = 0 and η = 8 9 .

Author Contributions

All authors contributed equally in writing this article. All authors read and approved the final manuscript.

Funding

This research received no external funding.

Acknowledgments

The third author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Banach, S. Sur les operations dans les ensembles et leur application aux equation sitegrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Kannan, R. Some results on fixed points. Bull. Calc. Math. Soc. 1972, 25, 727–730. [Google Scholar] [CrossRef]
  3. Edelstein, M. An extension of Banach’s contraction principle. J. Lond. Math. Soc. 1961, 12, 7–10. [Google Scholar]
  4. Hardy, G.E.; Rogers, T.D. A generalization of a fixed point theorem of Reich. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
  5. Rouhani, B.D.; Moradi, S. Common fixed point of multivalued generalized ϕ-weak contractive mappings. Fixed Point Theory Appl. 2010, 2010, 708984. [Google Scholar]
  6. Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly G-contraction mapping in G-metric spaces. Comput. Math. Appl. 2011, 62, 4222–4229. [Google Scholar] [CrossRef] [Green Version]
  7. la Sen, M.D.; Singh, S.L.; Gordji, M.E.; Ibeas, A.; Agarwal, R.P. Fixed point-type results for a class of extended cyclic self-mappings under three general weak contractive conditions of rational type. Fixed Point Theory Appl. 2011, 2011, 102. [Google Scholar] [CrossRef] [Green Version]
  8. Aydi, H.; Abbas, M.; Vetro, C. Partial Hausdorff Metric and Nadler’s Fixed Point Theorem on Partial Metric Spaces. Topol. Its Appl. 2012, 159, 3234–3242. [Google Scholar] [CrossRef]
  9. Kakutani, S. A generalization of Brouwer’s fixed point Theorem. Duke Math. J. 1941, 8, 457–459. [Google Scholar] [CrossRef]
  10. Aydi, H.; Bota, M.F.; Karapinar, E.; Moradi, S. A common fixed point for weak ϕ-contractions on b-metric spaces. Fixed Point Theory 2012, 13, 337–346. [Google Scholar]
  11. Aydi, H.; Karapinar, E.; Samet, B. Fixed point theorems for various classes of cyclic mappings. J. Appl. Math. 2012, 2012, 867216. [Google Scholar] [CrossRef]
  12. Mitrović, Z.D.; Aydi, H.; Hussain, N.; Mukheimer, A. Reich, Jungck, and Berinde common fixed point results on -metric spaces and an application. Mathematics 2019, 7, 387. [Google Scholar] [CrossRef]
  13. Patle, P.R.; Patel, D.K.; Aydi, H.; Gopal, D.; Mlaiki, N. Nadler and Kannan type set valued mappings in M-metric spaces and an application. Mathematics 2019, 7, 373. [Google Scholar] [CrossRef]
  14. Chatterjea, S.K. Fixed point theorems. C. R. Acad. Bulgare Sci. 1968, 60, 71–76. [Google Scholar] [CrossRef]
  15. Bakhtin, I.A. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
  16. Bourbaki, N. Topologie Generale; Herman: Paris, France, 1974. [Google Scholar]
  17. Czerwik, S. Nonlinear set-valued contraction mappings in b-metric spaces. Atti Sem. Mat. Fis. Univ. Modena 1998, 46, 263–276. [Google Scholar]
  18. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
  19. Kir, M.; Kiziltunc, H. On some well known fixed point theorems in b-metric spaces. Turk. Anal. Number Theory 2013, 1, 13–16. [Google Scholar] [CrossRef]
  20. Dubey, A.K.; Shukla, R.; Dubey, R.P. Some fixed point results in b-metric spaces. Asian J. Math. Appl. 2014, 1, 1–6. [Google Scholar]
  21. Koleva, R.; Zlatanov, B. On fixed points for Chatterjeas maps in b-metric spaces. Turk. J. Anal. Number Theory 2016, 4, 31–34. [Google Scholar]
  22. Ilchev, A.; Zlatanov, B. On Fixed Points for Reich Maps in B-Metric Spaces; Annual of Konstantin Preslavski University of Shumen, Faculty of Mathematics and Computer Science XVII C: Shumen, Bulgaria, 2016; pp. 77–88. [Google Scholar]
  23. Aleksic, S.; Mitrovic, Z.D.; Radenovic, S. On some recent fixed point results for single and multi-valued mapping in b-metric space. Fasc. Math. 2018, 61, 5–16. [Google Scholar]
  24. Nadler, S.B. Multi-valued contraction mappings. Not. Am. Math. Soc. 1967, 14, 930. [Google Scholar] [CrossRef]
  25. Singh, S.L.; Mishra, S.N.; Chugh, R.; Kamal, R. General Common Fixed Point Theorems and Applications. J. Appl. Math. 2012, 2012, 902312. [Google Scholar] [CrossRef]
  26. la Sen, M.D.; Singh, S.L.; Gordji, M.E.; Ibeas, A.; Agarwal, R.P. Best proximity and fixed point results for cyclic multi-valued mappings under a generalized contractive condition. Fixed Point Theory Appl. 2013, 2013, 324. [Google Scholar] [CrossRef]
  27. Petrusel, A.; Petrusel, G. On Reich’s strict fixed point theorem for multi-valued operators in complete metric spaces. J. Nonlinear Var. Anal. 2018, 2, 103–112. [Google Scholar]
  28. Ciric, L. A generalization of Banach’s contraction principle. Proc. Am. Math. Soc. 1974, 45, 267–273. [Google Scholar] [CrossRef]
  29. Amini-Harandi, A. Fixed point theory for set-valued quasi-contraction maps in metric spaces. Appl. Math. Lett. 2011, 24, 1791–1794. [Google Scholar] [CrossRef]
  30. Aydi, H.; Bota, M.F.; Karapinar, E.; Mitrovic, S. A fixed point Theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef]
  31. Subashi, L. Some topological properties of extended b-metric space. In Proceedings of the 5th International Virtual Conference on Advanced Scientific Results, Zilina, Slovakia, 26–30 June 2017; Volume 5, pp. 164–167. [Google Scholar]
  32. Subashi, L.; Gjini, N. Fractals in extended b-metric space. J. Prog. Res. Math. 2017, 12, 2057–2065. [Google Scholar]
  33. Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double Controlled Metric Type Spaces and Some Fixed Point Results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef]
  34. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
  35. Subashi, L.; Gjini, N. Some results on extended b-metric spaces and Pompeiu-Hausdorff metric. J. Prog. Res. Math. 2017, 12, 2021–2029. [Google Scholar]
  36. Alqahtani, B.; Fulga, A.; Karapinar, E. Non-Unique fixed point results in extended b-metric space. Mathematics 2018, 6, 68. [Google Scholar] [CrossRef]
  37. Shatanawi, W.; Mukheimer, A.; Abodayeh, K. Some fixed point Theorems in extended b-metric spaces. Appl. Math. Phys. 2018, 80, 71–78. [Google Scholar]
  38. Kamran, T. A Generalization of b-metric space and some fixed point theorems. Mathematics 2017, 5, 19. [Google Scholar] [CrossRef]
  39. Alqahtani, B.; Fulga, A.; Karapinar, E. Contractions with rational expression in the extended b-metric space. 2019; in press. [Google Scholar]
  40. Jovanovic, M.; Kadelburg, Z.; Radenovic, S. Common fixed point results in metric-type spaces. Fixed Point Theory Appl. 2010, 1, 978121. [Google Scholar] [CrossRef]
  41. Shah, M.H.; Simic, S.; Hussain, N.; Sretenovic, A.; Radenovic, S. Common fixed points theorems for occasionally weakly compatible pairs on cone metric type spaces. J. Comput. Anal. Appl. 2012, 14, 290–297. [Google Scholar]
  42. Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
  43. Daffer, P.Z.; Kaneko, H. Fixed points of generalized contractive multi-valued mappings. J. Math. Anal. Appl. 1995, 192, 655–666. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Kiran, Q.; Alamgir, N.; Mlaiki, N.; Aydi, H. On Some New Fixed Point Results in Complete Extended b-Metric Spaces. Mathematics 2019, 7, 476. https://doi.org/10.3390/math7050476

AMA Style

Kiran Q, Alamgir N, Mlaiki N, Aydi H. On Some New Fixed Point Results in Complete Extended b-Metric Spaces. Mathematics. 2019; 7(5):476. https://doi.org/10.3390/math7050476

Chicago/Turabian Style

Kiran, Quanita, Nayab Alamgir, Nabil Mlaiki, and Hassen Aydi. 2019. "On Some New Fixed Point Results in Complete Extended b-Metric Spaces" Mathematics 7, no. 5: 476. https://doi.org/10.3390/math7050476

APA Style

Kiran, Q., Alamgir, N., Mlaiki, N., & Aydi, H. (2019). On Some New Fixed Point Results in Complete Extended b-Metric Spaces. Mathematics, 7(5), 476. https://doi.org/10.3390/math7050476

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop