On the Inverse Ultrahyperbolic Klein-Gordon Kernel
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ;
- (ii)
- (iii)
- (iv)
- (v)
- .
- (i)
- (ii)
- If p is even, then
3. The Convolution of when
- If p and q are both odd, then
- If p is even and q is odd, then
- If p and q are both even, then
4. The Main Theorem
5. Conlusions
Funding
Acknowledgments
Conflicts of Interest
References
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions; Academic Press: New York, NY, USA, 1964; Volume 1. [Google Scholar]
- Trione, S.E. On Marcel Riesz’s ultra-hyperbolic kernel. Trab. Math. 1987, 116, 1–12. [Google Scholar]
- Tellez, M.A. The distributional Hankel transform of Marcel Riesz’s ultra-hyperbolic kernel. Stud. Appl. Math. 1994, 93, 133–162. [Google Scholar] [CrossRef]
- Kananthai, A. On the solution of the n-dimensional diamond operator. Appl. Math. Comput. 1997, 88, 27–37. [Google Scholar] [CrossRef]
- Bunpog, C. Boundary value problem of the operator ⊕k related to the biharmonic operator and diamond operator. Mathematics 2018, 6, 115. [Google Scholar] [CrossRef]
- Bupasiri, S. On the elementary solution for the partial differential operator related to the wave equation. Eur. J. Pure Appl. Math. 2018, 11, 309–399. [Google Scholar] [CrossRef]
- Kananthai, A. On the convolution equation related to the diamond kernel of Marcel Riesz. J. Comput. Appl. Math. 1998, 100, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Kananthai, A. On the convolution of the diamond kernel of Marcel Riesz. Appl. Math. Comput. 2000, 114, 95–101. [Google Scholar] [CrossRef]
- Kananthai, A. On the diamond operator related to the wave equation. Nonlinear Anal. Theor. Meth. Appl. 2001, 47, 1373–1382. [Google Scholar] [CrossRef]
- Kananthai, A. On the Fourier transform of the diamond kernel of Marcel Riesz. Appl. Math. Comput. 1999, 101, 151–158. [Google Scholar] [CrossRef]
- Kananthai, A. On the green function of the diamond operator related to the Klein-Gordon operator. Bull. Calcutta Math. Soc. 2001, 93, 353–360. [Google Scholar]
- Sritanratana, G.; Kananthai, A. On the nonlinear diamond operator related to the wave equation. Nonlinear Anal. Real World Appl. 2002, 3, 465–470. [Google Scholar] [CrossRef]
- Tellez, M.A.; Kananthai, A. On the convolution product of the distributional families related to the diamond operator. Le Matematiche 2002, 57, 39–48. [Google Scholar]
- Dominguez, A.G.; Trione, S.E. On the Laplace transform of retarded invariant functions. Adv. Math. 1978, 30, 51–62. [Google Scholar]
- Riesz, M. Integrale de Riemann-Liouville et le probleme de Cauchy. Acta Math. 1949, 81, 1–222. [Google Scholar] [CrossRef]
- Cerutti, R.A.; Trione, S.E. The inversion of Marcel Riesz ultra-hyperbolic causal operator. Appl. Math. Lett. 1999, 12, 25–30. [Google Scholar] [CrossRef]
- Schwartz, L. Theories des Distributions; Actualites Scientifiques et Industriel and Hermann & Cie: Paris, France, 1957 and 1959; Volumes 1 and 2. [Google Scholar]
- Aguirre, M.A. The inverse ultrahyperbolic Marcel Riesz kernel. Le Matematiche 1999, 54, 55–66. [Google Scholar]
- Maneetus, D.; Nonlaopon, K. The inversion of Bessel ultrahyperbolic kernel of Marcel Riesz. Abstr. Appl. Anal. 2011, 2011, 419157. [Google Scholar] [CrossRef]
- Maneetus, D.; Nonlaopon, K. On the inversion of diamond kernel of Marcel Riesz. Int. J. Math. Anal. 2013, 7, 441–451. [Google Scholar] [CrossRef]
- Salao, T.; Nonlaopon, K. On the inverse Bessel diamond kernel of Marcel Riesz. Integral Transforms Spec. Funct. 2013, 24, 129–140. [Google Scholar] [CrossRef]
- Tariboon, J.; Kananthai, A. On the Green function of the (⊕ + m2)k operator. Integral Transforms Spec. Funct. 2007, 18, 297–304. [Google Scholar] [CrossRef]
- Nonlaopon, K.; Lunnaree, A.; Kananthai, A. On the solution of the n-dimensional diamond Klein-Gordon operator and its convolution. Far East J. Math. Sci. 2012, 63, 203–220. [Google Scholar]
- Lunnaree, A.; Nonlaopon, K. On the Fourier transform of the diamond Klein-Gordon kernel. Int. J. Pure Appl. Math. 2011, 68, 85–97. [Google Scholar]
- Liangprom, A.; Nonlaopon, K. On the convolution equation related to the diamond Klein-Gordon operator. Abstr. Appl. Anal. 2011, 2011, 908491. [Google Scholar] [CrossRef]
- Sattaso, S.; Nonlaopon, K. On the convolution and inversion of diamond Klein Gordon kernel. Int. J. Pure Appl. Math. 2013, 83, 331–348. [Google Scholar] [CrossRef]
- Trione, S.E. On the elementary retarded ultra-hyperbolic solution of the Klein-Gordon operator iterated k-times. Stud. Appl. Math. 1988, 79, 121–141. [Google Scholar] [CrossRef]
- Tellez, M.A. The convolution product of Wα(u, m) ∗ Wβ(u, m). Math. Notae 1995–1996, 38, 105–111. [Google Scholar]
- Trione, S.E. On the elementary (P ± i0)λ ultrahyperbolic solution of the Klein-Gordon operator iterated k-times. Integral Transforms Spec. Funct. 2000, 9, 149–162. [Google Scholar] [CrossRef]
- Trione, S.E. The integral representation of the Riesz kernel Wα(u, m). Integral Transforms Spec. Funct. 1998, 7, 171–174. [Google Scholar] [CrossRef]
- Nozaki, Y. On Riemann-Liouville integral of ultra-hyperbolic type. Kodai Math. Semi. Rep. 1964, 6, 69–87. [Google Scholar] [CrossRef]
- Tellez, M.A. The expansion and Fourier’s transform of δ(k − 1)(m2 + P). Integral Transforms Spec. Funct. 1995, 3, 113–134. [Google Scholar] [CrossRef]
- Tellez, M.A.; Barrenechea, A.L. A relation between the kth derivative of the Dirac delta in (P ± i0) and the residue of the distributions (P ± i0)λ. J. Comput. Appl. Math. 1999, 108, 31–40. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nonlaopon, K. On the Inverse Ultrahyperbolic Klein-Gordon Kernel. Mathematics 2019, 7, 534. https://doi.org/10.3390/math7060534
Nonlaopon K. On the Inverse Ultrahyperbolic Klein-Gordon Kernel. Mathematics. 2019; 7(6):534. https://doi.org/10.3390/math7060534
Chicago/Turabian StyleNonlaopon, Kamsing. 2019. "On the Inverse Ultrahyperbolic Klein-Gordon Kernel" Mathematics 7, no. 6: 534. https://doi.org/10.3390/math7060534
APA StyleNonlaopon, K. (2019). On the Inverse Ultrahyperbolic Klein-Gordon Kernel. Mathematics, 7(6), 534. https://doi.org/10.3390/math7060534