Fourier Truncation Regularization Method for a Three-Dimensional Cauchy Problem of the Modified Helmholtz Equation with Perturbed Wave Number
Abstract
:1. Introduction
2. Some Auxiliary Results
3. Fourier Truncation Regularization Method and Error Estimate
4. Numerical Implementation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheng, H.W.; Huang, J.F.; Leiterman, T.J. An adaptive fast solver for the modified Helmholtz equation in two dimensions. J. Comput. Phys. 2006, 211, 616–637. [Google Scholar] [CrossRef]
- Marin, L.; Elliott, L.; Heggs, P.J.; Ingham, D.B.; Lesnic, D.; Wen, X. Conjugate gradient-boundary element solution to the Cauchy problem for Helmholtz-type equation. Comput. Mech. 2003, 31, 367–377. [Google Scholar]
- Beskos, D.E. Boundary element method in dynamic analysis: Part II (1986–1996). Appl. Mech. Rev. 1997, 50, 149–197. [Google Scholar] [CrossRef]
- Greengard, L.; Kropinski, M.C. An integral equation approach to the incompressible Navier-Stokes equations in two dimensions. SIAM J. Sci. Comput. 1998, 20, 318–336. [Google Scholar] [CrossRef]
- Yang, F.; Guo, H.Z.; Li, X.X. The simplified Tikhonov regularization method for identifying the unknown source for the modified Helmholtz equation. Math. Probl. Eng. 2011, 2011, 953492. [Google Scholar] [CrossRef]
- Li, X.X.; Yang, F.; Liu, J.; Wang, L. The Quasireversibility regularization method for identifying the unknown source for the modified Helmholtz equation. J. Appl. Math. 2013, 2013, 245963. [Google Scholar] [CrossRef]
- Marin, L.; Elliott, L.; Heggs, P.; Ingham, D.B.; Lesnic, D.; Wen, X. BEM solution for the Cauchy problem associated with Helmholtz-type equation by the Landweber method. Eng. Anal. Bound. Elem. 2004, 28, 1025–1034. [Google Scholar] [CrossRef]
- Marin, L. A meshless method for the numerical solution of the Cauchy problem associated with three-dimensional Helmholtz-type equations. Appl. Math. Comput. 2005, 165, 355–374. [Google Scholar] [CrossRef]
- Marin, L.; Lesnic, D. The method of fundamental solutions for the Cathy problem associated with two-dimensional Helmholtz-type equations. Comput. Struct. 2005, 83, 267–278. [Google Scholar] [CrossRef]
- Wei, T.; Hon, Y.; Ling, L. Method of fundamental solutions with regularization techniques for Cauchy problem of elliptic operators. Eng. Anal. Bound. Elem. 2007, 31, 373–385. [Google Scholar] [CrossRef]
- Jin, B.T.; Marin, L. The plane wave method for inverse problems associated with Helmholtz-type equations. Eng. Anal. Bound. Elem. 2008, 32, 223–240. [Google Scholar] [CrossRef]
- Qin, H.H.; Wen, D.W. Tikhonov type regularization method for the Cauchy problem of the modified Helmholtz equation. Appl. Math. Comput. 2008, 203, 617–628. [Google Scholar] [CrossRef]
- Shi, R.; Wei, T.; Qin, H.H. A fourth-order modified method for the Cauchy problem of the modified Helmholtz equation. Numer. Math. Appl. 2009, 2, 326–340. [Google Scholar] [CrossRef]
- Yang, F.; Sun, Y.R.; Li, X.X.; Huang, C.Y. The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain. Numer. Algorithms 2019. [Google Scholar] [CrossRef]
- Yang, F.; Wang, N.; Li, X.X.; Huang, C.Y. A quasi-boundary regularization method for identifying the initial value of time-fractional diffusion equation on spherically symmetric domain. J. Inverse Ill-Pose Prob. 2019. [Google Scholar] [CrossRef]
- Tuan, N.H.; Khoa, V.A.; Minh, M.N.; Tran, T. Reconstruction of the electric field of the Helmholtz equation in three dimensions. J. Comput. Appl. Math. 2017, 39, 56–78. [Google Scholar] [CrossRef]
- Hong, P.L.; Minh, T.L.; Hoang, Q.P. On a three dimensional Cauthy problem for inhomogeneous Helmholtz equation associated with perturbed wave number. J. Comput. Appl. Math. 2018, 335, 86–98. [Google Scholar]
- Eldén, L.; Berntsson, F.; Regińska, T. Wavelet and Fourier method for solving the sideways heat equation. SIAM J. Sci. Comput. 2000, 21, 2187–2205. [Google Scholar] [CrossRef]
- Fu, C.L.; Xiong, X.T.; Fu, P. Fourier regularization method for solving the surface heat flux from interior observations. Math. Comput. Model. 2005, 42, 489–498. [Google Scholar] [CrossRef]
- Fu, C.L. Simplified Tikhonov and Fourier regularization methods on a general sideways parabolic equation. J. Comput. Appl. Math. 2004, 167, 449–463. [Google Scholar] [CrossRef]
- Qian, Z.; Fu, C.L.; Xiong, X.T.; Wei, T. Fourier truncation method for high order numerical derivatives. Appl. Math. Comput. 2006, 181, 940–948. [Google Scholar] [CrossRef]
- Fu, C.L.; Zhang, Y.X.; Cheng, H.; Ma, Y.J. The a posteriori Fourier method for solving ill-posed problems. Inverse Probl. 2012, 28, 095002. [Google Scholar] [CrossRef]
- Yang, F. The truncation method for identifying an unknown source in the Poisson equation. Appl. Math. Comput. 2011, 217, 9334–9339. [Google Scholar] [CrossRef]
- Yang, F.; Fu, C.L. Two regularization methods to identify time-dependent heat source through an internal measurement of temperature. Math. Comput. Model. 2011, 53, 793–804. [Google Scholar] [CrossRef]
- Yang, F.; Fu, C.L.; Li, X.X. The inverse source problem for time fractional diffusion equation: Stability analysis and regularization. Inverse Probl. Sci. Eng. 2015, 23, 969–996. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Y.; Li, X.X. Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation. Numer. Algorithms 2019. [Google Scholar] [CrossRef]
- Tuan, N.H.; Mokhtar, K. A new fourier truncated regularization method for semilinear backward parabolic problems. Acta Appl. Math. 2017, 148, 143–155. [Google Scholar]
- Zhang, Z.Q.; Wei, T. Identifying an unknown source in time-fractional diffusion equation by a truncation method. Appl. Math. Comput. 2013, 219, 5972–5983. [Google Scholar] [CrossRef]
- Fu, C.L.; Feng, X.L.; Qian, Z. The Fourier regularization for solving the Cauchy problem for the Helmholtz equation. Appl. Numer. Math. 2009, 59, 2625–2640. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Fu, C.L.; Deng, Z.L. An a posteriori truncation method for some Cauchy problems associated with Helmholtz-type equations. Inverse Probl. Sci. Eng. 2013, 21, 1151–1168. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, P.; Li, X.X. The truncation method for the Cauchy problem of the inhomogeneous Helmholtz equation. Appl. Anal. 2019, 98, 991–1004. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Fan, P.; Li, X.-X. Fourier Truncation Regularization Method for a Three-Dimensional Cauchy Problem of the Modified Helmholtz Equation with Perturbed Wave Number. Mathematics 2019, 7, 705. https://doi.org/10.3390/math7080705
Yang F, Fan P, Li X-X. Fourier Truncation Regularization Method for a Three-Dimensional Cauchy Problem of the Modified Helmholtz Equation with Perturbed Wave Number. Mathematics. 2019; 7(8):705. https://doi.org/10.3390/math7080705
Chicago/Turabian StyleYang, Fan, Ping Fan, and Xiao-Xiao Li. 2019. "Fourier Truncation Regularization Method for a Three-Dimensional Cauchy Problem of the Modified Helmholtz Equation with Perturbed Wave Number" Mathematics 7, no. 8: 705. https://doi.org/10.3390/math7080705
APA StyleYang, F., Fan, P., & Li, X. -X. (2019). Fourier Truncation Regularization Method for a Three-Dimensional Cauchy Problem of the Modified Helmholtz Equation with Perturbed Wave Number. Mathematics, 7(8), 705. https://doi.org/10.3390/math7080705