Properties of Spiral-Like Close-to-Convex Functions Associated with Conic Domains
Abstract
:1. Introduction and Motivation
2. A Set of Lemmas
3. Main Results and Their Demonstrations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer-Verlag: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Spaček, L. Prispevek k teorii funkei prostych. Casǒpis. Pest. Mat. 1933, 62, 12–19. [Google Scholar]
- Libera, R.J. Univalent a-spiral functions. Can. J. Math. 1967, 19, 449–456. [Google Scholar]
- Silvia, M.E. On a subclass of spiral-like functions. Proc. Am. Math. Soc. 1974, 44, 411–420. [Google Scholar] [CrossRef]
- Umarani, P. On a subclass of spiral-like functions. Indian J. Pure Appl. Math. 1979, 10, 1292–1297. [Google Scholar]
- Noor, K.I.; Khan, N.; Ahmad, Q.Z. Some properties of multivalent spiral-like functions. Maejo Int. J. Sci. Technol. 2018, 3, 353–364. [Google Scholar]
- Kanas, S.; Wiśniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wiśniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integral Transforms Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
- Shams, S.; Kulkarni, S.R.; Jahangiri, J.M. Classes of uniformly starlike and convex functions. Int. J. Math. Math. Sci. 2004, 55, 2959–2961. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Shanmugam, T.N.; Ramachandran, C.; Sivassurbramanian, S. A new subclass of k-uniformly convex functions with negative coefficients. J. Inequal. Pure Appl. Math. 2007, 8, 1–14. [Google Scholar]
- Acu, M. On a subclass of k-uniformly close to convex functions. Gen. Math. 2006, 14, 55–64. [Google Scholar]
- Arif, M.; Dziok, J.; Raza, M.; Sokól, J. On products of multivalent close-to-star functions. J. Inequal. Appl. 2015, 2015, 1–14. [Google Scholar] [CrossRef]
- Khan, N.; Khan, B.; Ahmad, Q.Z.; Ahmad, S. Some Convolution properties of multivalent analytic functions. AIMS Math. 2017, 2, 260–268. [Google Scholar] [CrossRef]
- Noor, K.I.; Khan, N.; Noor, M.A. On generalized spiral-like analytic functions. Filomat 2014, 28, 1493–1503. [Google Scholar] [CrossRef]
- Raza, M.; Din, M.U.; Malik, S.N. Certain geometric properties of normalized Wright functions. J. Funct. Spaces 2016, 2016. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Eker, S.S. Some applications of a subordination theorem for a class of analytic functions. Appl. Math. Lett. 2008, 21, 394–399. [Google Scholar] [CrossRef]
- Srivastava, H.M.; El-Ashwah, R.M.; Breaz, N. A certain subclass of multivalent functions involving higher-order derivatives. Filomat 2016, 30, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Aldweby, H.; Darus, M. A note on q-integral operators. Electron. Notes Discret. Math. 2018, 67, 25–30. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. On Fekete-Szegö problems for certain subclasses defined by q-derivative. J. Funct. Spaces 2017, 1–5. [Google Scholar] [CrossRef]
- Elhaddad, S.; Aldweby, H.; Darus, M. Some Properties on a class of harmonic univalent functions defined by q-analoque of Ruscheweyh operator. J. Math. Anal. 2018, 9, 28–35. [Google Scholar]
- Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M. Applications of a q-Sǎlǎgean type operator on multivalent functions. J. Inequal. Appl. 2018, 301, 1–12. [Google Scholar] [CrossRef]
- Rasheed, A.; Hussain, S.; Zaighum, M.A.; Darus, M. Class of analytic function related with uniformly convex and Janowski’s functions. J. Funct. Spaces 2018, 2018. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Kanas, S. Techniques of the differential subordination for domains bounded by conic sections. Int. J. Math. Math. Sci. 2003, 38, 2389–2400. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Khan, N.; Darus, M.; Rahim, M.T.; Ahmad, Q.Z.; Zeb, Y. Properties of Spiral-Like Close-to-Convex Functions Associated with Conic Domains. Mathematics 2019, 7, 706. https://doi.org/10.3390/math7080706
Srivastava HM, Khan N, Darus M, Rahim MT, Ahmad QZ, Zeb Y. Properties of Spiral-Like Close-to-Convex Functions Associated with Conic Domains. Mathematics. 2019; 7(8):706. https://doi.org/10.3390/math7080706
Chicago/Turabian StyleSrivastava, Hari M., Nazar Khan, Maslina Darus, Muhammad Tariq Rahim, Qazi Zahoor Ahmad, and Yousra Zeb. 2019. "Properties of Spiral-Like Close-to-Convex Functions Associated with Conic Domains" Mathematics 7, no. 8: 706. https://doi.org/10.3390/math7080706
APA StyleSrivastava, H. M., Khan, N., Darus, M., Rahim, M. T., Ahmad, Q. Z., & Zeb, Y. (2019). Properties of Spiral-Like Close-to-Convex Functions Associated with Conic Domains. Mathematics, 7(8), 706. https://doi.org/10.3390/math7080706