Chen’s Biharmonic Conjecture and Submanifolds with Parallel Normalized Mean Curvature Vector
Abstract
:1. Introduction
2. Preliminaries
3. Proof of the Theorem 1
4. Some Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, B.-Y. Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 1991, 17, 169–188. [Google Scholar]
- Jiang, G.Y. Some non-existence theorems of 2-harmonic isometric immersions into Euclidean spaces. Chin. Ann. Math. Ser. A 1987, 8, 377–383. [Google Scholar]
- Dimitrić, I. Quadric Representation and Submanifolds of Finite Type. Ph.D. Thesis, Michigan State University, East Lansing, MI, USA, 1989. [Google Scholar]
- Dimitrić, I. Submanifolds of with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sin. 1992, 20, 53–65. [Google Scholar]
- Chen, B.-Y. Total Mean Curvature and Submanifolds of Finite Type, 2nd ed.; World Scientific: Hackensack, NJ, USA, 2015. [Google Scholar]
- Chen, B.-Y. A report of submanifolds of finite type. Soochow J. Math. 1996, 22, 117–337. [Google Scholar]
- Chen, B.-Y. Some open problems and conjectures on submanifolds of finite type: Recent development. Tamkang J. Math. 2014, 45, 87–108. [Google Scholar] [CrossRef]
- Hasanis, T.; Vlachos, T. Hypersurfaces in with harmonic mean curvature vector field. Math. Nachr. 1995, 172, 145–169. [Google Scholar] [CrossRef]
- Defever, F. Hypersurfaces of with harmonic mean curvature vector. Math. Nachr. 1998, 196, 61–69. [Google Scholar]
- Fu, Y. Biharmonic hypersurfaces with three distinct principal curvatures in . J. Geom. Phys. 2014, 75, 113–119. [Google Scholar] [CrossRef]
- Fu, Y. Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean space. Tohoku Math. J. 2015, 67, 465–479. [Google Scholar] [CrossRef] [Green Version]
- Montaldo, S.; Oniciuc, C.; Ratto, A. On cohomogeneity one biharmonic hypersurfaces into the Euclidean space. J. Geom. Phys. 2016, 106, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.-Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math. 1993, 60, 568–578. [Google Scholar] [CrossRef]
- Chen, B.-Y. Strings of Riemannian invariants, inequalities, ideal immersions and their applications. In Proceedings of the Third Pacific Rim Geometry Conference, Seoul, Korea, 16–19 December 1996; International Press of Boston, Inc.: Somerville, MA, USA, 1998; pp. 7–60. [Google Scholar]
- Chen, B.-Y. Some new obstructions to minimal and Lagrangian isometric immersions. Jpn. J. Math. 2000, 26, 105–127. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.-Y. Pseudo-Riemannian Geometry, δ-Invariants and Applications; World Scientific: Hackensack, NJ, USA, 2011. [Google Scholar]
- Chen, B.-Y.; Munteanu, M.I. Biharmonic ideal hypersurfaces in Euclidean spaces. Differ. Geom. Appl. 2013, 31, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Akutagawa, K.; Maeta, S. Biharmonic properly immersed submanifolds in Euclidean spaces. Geom. Dedicata 2013, 164, 351–355. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Ishikawa, S. Biharmonic surfaces in pseudo-Euclidean spaces. Kyushu J. Math. 1991, 45, 323–347. [Google Scholar] [CrossRef]
- Chen, B.-Y.; Ishikawa, S. Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces. Kyushu J. Math. 1998, 52, 1–18. [Google Scholar] [CrossRef]
- Arvanitoyeorgos, A.; Defever, F.; Kaimakamis, G.; Papantoniou, V. Biharmonic Lorentz hypersurfaces in . Pac. J. Math. 2007, 229, 293–305. [Google Scholar] [CrossRef]
- Jiang, G.Y. 2-Harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 1986, 7, 389–402. [Google Scholar]
- Caddeo, R.; Montaldo, S.; Oniciuc, C. Biharmonic submanifolds in spheres. Israel J. Math. 2002, 130, 109–123. [Google Scholar] [CrossRef]
- Caddeo, R.; Montaldo, S.; Oniciuc, C. Biharmonic submanifolds of S3. Int. J. Math. 2001, 12, 867–876. [Google Scholar] [CrossRef]
- Chen, B.-Y. Recent developments of biharmonic conjectures and modified biharmonic conjectures. Pure and Applied Differential Geometry PADGE 2012; Shaker Verlag: Aachen, Germany, 2013; pp. 81–90. [Google Scholar]
- Alías, L.J.; García-Martínez, S.C.; Rigoli, M. Biharmonic hypersurfaces in complete Riemannian manifolds. Pac. J. Math. 2013, 263, 1–12. [Google Scholar] [CrossRef]
- Balmus, A.; Montaldo, S.; Oniciuc, C. Classification results for biharmonic submanifolds in spheres. Israel J. Math. 2008, 168, 201–220. [Google Scholar] [CrossRef] [Green Version]
- Balmus, A.; Montaldo, S.; Oniciuc, C. Biharmonic hypersurfaces in 4-dimensional space forms. Math. Nachr. 2010, 283, 1696–1705. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.-L. Biharmonic hypersurfaces in Riemannian manifolds. Pac. J. Math. 2010, 248, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Ou, Y.-L. Some constructions of biharmonic maps and Chen’s conjecture on biharmonic hypersurfaces. J. Geom. Phys. 2012, 62, 751–762. [Google Scholar] [CrossRef]
- Ou, Y.-L.; Tang, L. On the generalized Chen’s conjecture on biharmonic submanifolds. Michigan Math. J. 2012, 61, 531–542. [Google Scholar] [CrossRef]
- Chen, B.-Y. Surfaces with parallel normalized mean curvature vector. Monatsh. Math. 1980, 90, 185–194. [Google Scholar] [CrossRef]
- Chen, B.-Y. Geometry of Submanifolds: Marcer Dekker; M. Dekker: New York, NY, USA, 1973. [Google Scholar]
- Chen, B.-Y. On the total curvature of immersed manifolds. VI: Submanifolds of finite type and their applications. Bull. Inst. Math. Acad. Sin. 1983, 11, 309–328. [Google Scholar]
- Chen, B.-Y. Total Mean Curvature and Submanifolds of Finite Type; World Scientific: Singapore, 1984. [Google Scholar]
- Chen, B.-Y.; Yano, K. Minimal submanifolds of higher dimensional sphere. Tensor 1971, 22, 369–373. [Google Scholar]
- Sen, R.Y.; Turgay, N.C. On biconservative surfaces in 4-dimensional Euclidean space. J. Math. Anal. Appl. 2018, 460, 565–581. [Google Scholar]
- Balmus, A.; Montaldo, S.; Oniciuc, C. Biharmonic PNMC submanifolds in spheres. Ark. Mat. 2013, 51, 197–221. [Google Scholar] [CrossRef]
- Fetcu, D.; Loubeau, E.; Oniciue, C. Bochner-Simons formulas and the rigidity of biharmonic submanifolds. arXiv 2018, arXiv:1801.07879. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.-Y. Chen’s Biharmonic Conjecture and Submanifolds with Parallel Normalized Mean Curvature Vector. Mathematics 2019, 7, 710. https://doi.org/10.3390/math7080710
Chen B-Y. Chen’s Biharmonic Conjecture and Submanifolds with Parallel Normalized Mean Curvature Vector. Mathematics. 2019; 7(8):710. https://doi.org/10.3390/math7080710
Chicago/Turabian StyleChen, Bang-Yen. 2019. "Chen’s Biharmonic Conjecture and Submanifolds with Parallel Normalized Mean Curvature Vector" Mathematics 7, no. 8: 710. https://doi.org/10.3390/math7080710
APA StyleChen, B. -Y. (2019). Chen’s Biharmonic Conjecture and Submanifolds with Parallel Normalized Mean Curvature Vector. Mathematics, 7(8), 710. https://doi.org/10.3390/math7080710