Complex and Contact Manifolds

A special issue of Mathematics (ISSN 2227-7390). This special issue belongs to the section "Engineering Mathematics".

Deadline for manuscript submissions: closed (31 October 2020) | Viewed by 22120

Special Issue Editors

Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, 010014 Bucharest, Romania
Interests: differential geometry; riemannian geometry; submanifolds; relativity; fractional calculus
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Mathematics and Computer Science, Technical University of Civil Engineering Bucharest, Bd. Lacul Tei 122-124, 020396 Bucharest, Romania
Interests: (pseudo-)Riemannian manifolds; curvature invariants; complex manifolds; contact manifolds, submanifold theory; statistical manifolds
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The most studied differentiable manifolds are those endowed with certain endomorphisms of their tangent bundles: almost complex, almost product, almost contact, and almost paracontact manifolds, etc. Among complex manifolds, Kaehler manifolds play the most important role via their geometrical properties. Roughly speaking, contact manifolds are the odd-dimensional version of complex manifolds; in particular, Sasakian manifolds correspond to Kaehler manifolds. There are topological obstructions to the existence of Kaehler and Sasakian structures, respectively, on compact Riemannian manifolds.

The geometry of submanifolds in such manifolds is an important topic of research. Obstructions to the existence of special classes of submanifolds in complex and Sasakian manifolds were obtained in terms of their Riemannian curvature invariants.

The purpose of this Special Issue is to collect selected review works written by well-known researchers in the field, as well as new developments in the geometry of complex and contact manifolds or/and explore applications in other areas.

Prof. Dr. Ion Mihai
Assoc. Prof. Dr. Adela Mihai
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Mathematics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • complex manifolds
  • contact manifolds
  • Riemannian invariants
  • complex contact manifolds
  • submanifolds in complex and contact manifolds
  • holomorphic and Sasakian statistical manifolds

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

27 pages, 333 KiB  
Article
The Geometry of a Randers Rotational Surface with an Arbitrary Direction Wind
by Rattanasak Hama and Sorin V. Sabau
Mathematics 2020, 8(11), 2047; https://doi.org/10.3390/math8112047 - 17 Nov 2020
Cited by 4 | Viewed by 1867
Abstract
In the present paper, we study the global behaviour of geodesics of a Randers metric, defined on Finsler surfaces of revolution, obtained as the solution of the Zermelo’s navigation problem. Our wind is not necessarily a Killing field. We apply our findings to [...] Read more.
In the present paper, we study the global behaviour of geodesics of a Randers metric, defined on Finsler surfaces of revolution, obtained as the solution of the Zermelo’s navigation problem. Our wind is not necessarily a Killing field. We apply our findings to the case of the topological cylinder R×S1 and describe in detail the geodesics behaviour, the conjugate and cut loci. Full article
(This article belongs to the Special Issue Complex and Contact Manifolds)
Show Figures

Figure 1

11 pages, 279 KiB  
Article
A Geometric Obstruction for CR-Slant Warped Products in a Nearly Cosymplectic Manifold
by Siraj Uddin and M. Z. Ullah
Mathematics 2020, 8(9), 1622; https://doi.org/10.3390/math8091622 - 19 Sep 2020
Cited by 2 | Viewed by 1940
Abstract
In the early 20th century, B.-Y. Chen introduced the concept of CR-warped products and obtained several fundamental results, such as inequality for the length of second fundamental form. In this paper, we obtain B.-Y. Chen’s inequality for CR-slant warped products in nearly cosymplectic [...] Read more.
In the early 20th century, B.-Y. Chen introduced the concept of CR-warped products and obtained several fundamental results, such as inequality for the length of second fundamental form. In this paper, we obtain B.-Y. Chen’s inequality for CR-slant warped products in nearly cosymplectic manifolds, which are the more general classes of manifolds. The equality case of this inequality is also investigated. Furthermore, the inequality is discussed for some important subclasses of CR-slant warped products. Full article
(This article belongs to the Special Issue Complex and Contact Manifolds)
13 pages, 256 KiB  
Article
Contact Metric Spaces and pseudo-Hermitian Symmetry
by Jong Taek Cho
Mathematics 2020, 8(9), 1583; https://doi.org/10.3390/math8091583 - 14 Sep 2020
Viewed by 2664
Abstract
We prove that a contact strongly pseudo-convex CR (Cauchy–Riemann) manifold M2n+1, n2, is locally pseudo-Hermitian symmetric and satisfies ξh=μhϕ, μR, if and only if M [...] Read more.
We prove that a contact strongly pseudo-convex CR (Cauchy–Riemann) manifold M2n+1, n2, is locally pseudo-Hermitian symmetric and satisfies ξh=μhϕ, μR, if and only if M is either a Sasakian locally ϕ-symmetric space or a non-Sasakian (k,μ)-space. When n=1, we prove a classification theorem of contact strongly pseudo-convex CR manifolds with pseudo-Hermitian symmetry. Full article
(This article belongs to the Special Issue Complex and Contact Manifolds)
17 pages, 296 KiB  
Article
Hypersurfaces of a Sasakian Manifold
by Haila Alodan, Sharief Deshmukh, Nasser Bin Turki and Gabriel-Eduard Vîlcu
Mathematics 2020, 8(6), 877; https://doi.org/10.3390/math8060877 - 1 Jun 2020
Cited by 9 | Viewed by 2130
Abstract
We extend the study of orientable hypersurfaces in a Sasakian manifold initiated by Watanabe. The Reeb vector field ξ of the Sasakian manifold induces a vector field ξ T on the hypersurface, namely the tangential component of ξ to hypersurface, and it also [...] Read more.
We extend the study of orientable hypersurfaces in a Sasakian manifold initiated by Watanabe. The Reeb vector field ξ of the Sasakian manifold induces a vector field ξ T on the hypersurface, namely the tangential component of ξ to hypersurface, and it also gives a smooth function ρ on the hypersurface, which is the projection of the Reeb vector field on the unit normal. First, we find volume estimates for a compact orientable hypersurface and then we use them to find an upper bound of the first nonzero eigenvalue of the Laplace operator on the hypersurface, showing that if the equality holds then the hypersurface is isometric to a certain sphere. Also, we use a bound on the energy of the vector field ρ on a compact orientable hypersurface in a Sasakian manifold in order to find another geometric condition (in terms of mean curvature and integral curves of ξ T ) under which the hypersurface is isometric to a sphere. Finally, we study compact orientable hypersurfaces with constant mean curvature in a Sasakian manifold and find a sharp upper bound on the first nonzero eigenvalue of the Laplace operator on the hypersurface. In particular, we show that this upper bound is attained if and only if the hypersurface is isometric to a sphere, provided that the Ricci curvature of the hypersurface along ρ has a certain lower bound. Full article
(This article belongs to the Special Issue Complex and Contact Manifolds)
19 pages, 276 KiB  
Article
Chen Inequalities for Statistical Submanifolds of Kähler-Like Statistical Manifolds
by Hülya Aytimur, Mayuko Kon, Adela Mihai, Cihan Özgür and Kazuhiko Takano
Mathematics 2019, 7(12), 1202; https://doi.org/10.3390/math7121202 - 8 Dec 2019
Cited by 19 | Viewed by 2669
Abstract
We consider Kähler-like statistical manifolds, whose curvature tensor field satisfies a natural condition. For their statistical submanifolds, we prove a Chen first inequality and a Chen inequality for the invariant δ ( 2 , 2 ) . [...] Read more.
We consider Kähler-like statistical manifolds, whose curvature tensor field satisfies a natural condition. For their statistical submanifolds, we prove a Chen first inequality and a Chen inequality for the invariant δ ( 2 , 2 ) . Full article
(This article belongs to the Special Issue Complex and Contact Manifolds)
11 pages, 259 KiB  
Article
Submanifolds in Normal Complex Contact Manifolds
by Adela Mihai and Ion Mihai
Mathematics 2019, 7(12), 1195; https://doi.org/10.3390/math7121195 - 5 Dec 2019
Viewed by 2112
Abstract
In the present article we initiate the study of submanifolds in normal complex contact metric manifolds. We define invariant and anti-invariant ( C C -totally real) submanifolds in such manifolds and start the study of their basic properties. Also, we establish the Chen [...] Read more.
In the present article we initiate the study of submanifolds in normal complex contact metric manifolds. We define invariant and anti-invariant ( C C -totally real) submanifolds in such manifolds and start the study of their basic properties. Also, we establish the Chen first inequality and Chen inequality for the invariant δ ( 2 , 2 ) for C C -totally real submanifolds in a normal complex contact space form and characterize the equality cases. We also prove the minimality of C C -totally real submanifolds of maximum dimension satisfying the equalities. Full article
(This article belongs to the Special Issue Complex and Contact Manifolds)
7 pages, 262 KiB  
Article
Holomorphic Approximation on Certain Weakly Pseudoconvex Domains in Cn
by Shaban Khidr
Mathematics 2019, 7(11), 1035; https://doi.org/10.3390/math7111035 - 3 Nov 2019
Cited by 1 | Viewed by 1748
Abstract
The purpose of this paper is to study the Mergelyan approximation property in L p and C k -scales on certain weakly pseudoconvex domains of finite/infinite type in C n . At the heart of our results lies the solvability of the additive [...] Read more.
The purpose of this paper is to study the Mergelyan approximation property in L p and C k -scales on certain weakly pseudoconvex domains of finite/infinite type in C n . At the heart of our results lies the solvability of the additive Cousin problem with bounds as well as estimates of the ¯ -equation in the corresponding topologies. Full article
(This article belongs to the Special Issue Complex and Contact Manifolds)
10 pages, 247 KiB  
Article
On the Sign of the Curvature of a Contact Metric Manifold
by David E. Blair
Mathematics 2019, 7(10), 892; https://doi.org/10.3390/math7100892 - 24 Sep 2019
Cited by 1 | Viewed by 2238
Abstract
In this expository article, we discuss the author’s conjecture that an associated metric for a given contact form on a contact manifold of dimension ≥5 must have some positive curvature. In dimension 3, the standard contact structure on the 3-torus admits a flat [...] Read more.
In this expository article, we discuss the author’s conjecture that an associated metric for a given contact form on a contact manifold of dimension ≥5 must have some positive curvature. In dimension 3, the standard contact structure on the 3-torus admits a flat associated metric; we also discuss a local example, due to Krouglov, where there exists a neighborhood of negative curvature on a particular 3-dimensional contact metric manifold. In the last section, we review some results on contact metric manifolds with negative sectional curvature for sections containing the Reeb vector field. Full article
(This article belongs to the Special Issue Complex and Contact Manifolds)
7 pages, 258 KiB  
Article
Chen’s Biharmonic Conjecture and Submanifolds with Parallel Normalized Mean Curvature Vector
by Bang-Yen Chen
Mathematics 2019, 7(8), 710; https://doi.org/10.3390/math7080710 - 6 Aug 2019
Cited by 10 | Viewed by 3041
Abstract
The well known Chen’s conjecture on biharmonic submanifolds in Euclidean spaces states that every biharmonic submanifold in a Euclidean space is a minimal one. For hypersurfaces, we know from Chen and Jiang that the conjecture is true for biharmonic surfaces in [...] Read more.
The well known Chen’s conjecture on biharmonic submanifolds in Euclidean spaces states that every biharmonic submanifold in a Euclidean space is a minimal one. For hypersurfaces, we know from Chen and Jiang that the conjecture is true for biharmonic surfaces in E 3 . Also, Hasanis and Vlachos proved that biharmonic hypersurfaces in E 4 ; and Dimitric proved that biharmonic hypersurfaces in E m with at most two distinct principal curvatures. Chen and Munteanu showed that the conjecture is true for δ ( 2 ) -ideal and δ ( 3 ) -ideal hypersurfaces in E m . Further, Fu proved that the conjecture is true for hypersurfaces with three distinct principal curvatures in E m with arbitrary m. In this article, we provide another solution to the conjecture, namely, we prove that biharmonic surfaces do not exist in any Euclidean space with parallel normalized mean curvature vectors. Full article
(This article belongs to the Special Issue Complex and Contact Manifolds)
Back to TopTop