Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions
Abstract
:1. Introduction
2. Preliminaries
3. A Key Lemma
4. Main Results
5. Applications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Birkhäuser: Basel, Switzerland; New York, NY, USA, 2012. [Google Scholar]
- Ernst, T. A method for q-calculus. J. Nonlinear Math. Phys. 2003, 10, 487–525. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; Iscan, I. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef]
- Lee, J.; Vîlcu, G.E. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in quaternionic space forms. Taiwan J. Math. 2015, 19, 691–702. [Google Scholar] [CrossRef]
- Vîlcu, G.E. An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature. J. Math. Anal. Appl. 2018, 465, 1209–1222. [Google Scholar] [CrossRef]
- Aquib, M.; Lee, J.E.; Vîlcu, G.E.; Yoon, D.W. Classification of Casorati ideal Lagrangian submanifolds in complex space forms. Differ. Geom. Appl. 2019, 63, 30–49. [Google Scholar] [CrossRef]
- Vîlcu, A.D.; Vîlcu, G.E. On quasi-homogeneous production functions. Symmetry 2019, 11, 976. [Google Scholar] [CrossRef]
- Hanson, M.A. On sufficiency of the Kuhn-Tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Jeyakumar, V. Strong and weak invexity in mathematical programming. Methods Oper. Res. 1985, 55, 109–125. [Google Scholar]
- Ben-Israel, A.; Mond, B. What is invexity? J. Austral. Math. Soc. Ser. B 1986, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef]
- Jeyakumar, V.; Mond, B. On generalized convex mathematical programming. J. Aust. Math. Soc. Ser. B 1992, 34, 43–53. [Google Scholar] [CrossRef]
- Noor, M.A. Generalized convex functions. Pan-Am. Math. J. 1994, 4, 73–89. [Google Scholar]
- Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I. Some characterizations of strongly preinvex functions. J. Math. Anal. Appl. 2006, 316, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Awan, M.U.; Cristescu, G.; Noor, M.A.; Riahi, L. Upper and lower bounds for Riemann type quantum integrals of preinvex and preinvex dominated functions. UPB Sci. Bull. Ser. A 2017, 79, 33–44. [Google Scholar]
- Cristescu, G.; Noor, M.A.; Awan, M.U. Bounds of the second degree cumulative frontier gaps of functions with generalized convexity. Carpath. J. Math. 2015, 31, 173–180. [Google Scholar]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications, A Contemporary Approach, 2nd ed.; CMS Books in Mathematics; Springer: New York, NY, USA, 2018; Volume 23. [Google Scholar]
- Cristescu, G.; Lupsa, L. Non-Connected Convexities and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math.Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Quantum Ostrowski inequalities for q-differentiable convex functions. J. Math. Inequal. 2016, 10, 1013–1018. [Google Scholar] [CrossRef]
- Riahi, L.; Awan, M.U.; Noor, M.A. Some complementary q-bounds via different classes of convex functions. UPB Sci. Bull. Ser. A 2017, 79, 171–182. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Ozdemir, M.E. On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 2010, 60, 2191–2199. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Du, T.S.; Wang, H.; Shen, Y.J. Different types of quantum integral inequalities via α,m-convexity. J. Inequal. Appl. 2018, 2018, 264. [Google Scholar] [CrossRef] [PubMed]
- Tunç, M.; Göv, E.; Balgeçti, S. Simpson type quantum integral inequalities for convex functions. Miskolc Math. Notes 2018, 19, 649–664. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Awan, M.U.; Wu, S. Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions. Mathematics 2019, 7, 751. https://doi.org/10.3390/math7080751
Deng Y, Awan MU, Wu S. Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions. Mathematics. 2019; 7(8):751. https://doi.org/10.3390/math7080751
Chicago/Turabian StyleDeng, Yongping, Muhammad Uzair Awan, and Shanhe Wu. 2019. "Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions" Mathematics 7, no. 8: 751. https://doi.org/10.3390/math7080751
APA StyleDeng, Y., Awan, M. U., & Wu, S. (2019). Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions. Mathematics, 7(8), 751. https://doi.org/10.3390/math7080751