A Lyapunov-Type Inequality for a Laplacian System on a Rectangular Domain with Zero Dirichlet Boundary Conditions
Abstract
:1. Introduction
2. Preliminaries
3. Lyapunov-Type Inequalities
3.1. From PDEs to ODEs
3.2. Main Result
3.3. Particular Cases
3.3.1. The Case
3.3.2. The Limit Case
3.3.3. The Case
3.3.4. The Case of a Single Equation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Borg, G. On a Liapounoff criterion of stability. Am. J. Math. 1949, 71, 67–70. [Google Scholar] [CrossRef]
- Lyapunov, A. Problème Général de la Stabilité du Mouvement. Ann. Fac. Sci. Toulouse 1907, 9, 204–474. [Google Scholar]
- Das, K.M.; Vatsala, A.S. Green’s function for n-n boundary value problem and an analogue of Hartman’s result. J. Math. Anal. Appl. 1975, 51, 670–677. [Google Scholar] [CrossRef]
- Elbert, A. A half-linear second order differential equation. Colloq. Math. Soc. János Bolyai 1979, 30, 158–180. [Google Scholar] [CrossRef]
- Hartman, P.; Wintner, A. On an oscillation criterion of Liapunoff. Am. J. Math. 1951, 73, 885–890. [Google Scholar] [CrossRef]
- De Nápoli, P.L.; Pinasco, J.P. Estimates for eigenvalues of quasilinear elliptic systems. J. Differ. Equations 2006, 227, 102–115. [Google Scholar] [CrossRef] [Green Version]
- Nehari, Z. On the zeros of solutions of second-order linear differential equations. Am. J. Math. 1954, 76, 689–697. [Google Scholar] [CrossRef]
- Wintner, A. On the non-existence of conjugate points. Am. J. Math. 1951, 73, 368–380. [Google Scholar] [CrossRef]
- Cañada, A.; Montero, J.A.; Villegas, S. Lyapunov inequalities for partial differential equations. J. Funct. Anal. 2006, 237, 176–193. [Google Scholar] [CrossRef] [Green Version]
- De Nápoli, P.L.; Pinasco, J.P. Lyapunov-type inequalities for partial differential equations. J. Funct. Anal. 2016, 270, 1995–2018. [Google Scholar] [CrossRef]
- Jleli, M.; Kirane, M.; Samet, B. Lyapunov-type inequalities for fractional partial differential equations. Appl. Math. Lett. 2017, 66, 30–39. [Google Scholar] [CrossRef]
- Jleli, M.; Kirane, M.; Samet, B. Lyapunov-type inequalities for a fractional p-Laplacian system. Fract. Calc. Appl. Anal. 2017, 20, 1485–1506. [Google Scholar] [CrossRef]
- Jleli, M.; Kirane, M.; Samet, B. On Lyapunov-type inequalities for a certain class of partial differential equations. Appl. Anal. 2018. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Jleli, M.; Samet, B. On De La Vallée Poussin-type inequalities in higher dimension and applications. Appl. Math. Lett. 2018, 86, 264–269. [Google Scholar] [CrossRef]
- Kaplan, S. On the growth of solutions of quasilinear parabolic equations. Comm. Pure Appl. Math. 1963, 16, 305–333. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science Inc.: New York, NY, USA, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach: Longhorne, PA, USA, 1993. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jleli, M.; Samet, B. A Lyapunov-Type Inequality for a Laplacian System on a Rectangular Domain with Zero Dirichlet Boundary Conditions. Mathematics 2019, 7, 850. https://doi.org/10.3390/math7090850
Jleli M, Samet B. A Lyapunov-Type Inequality for a Laplacian System on a Rectangular Domain with Zero Dirichlet Boundary Conditions. Mathematics. 2019; 7(9):850. https://doi.org/10.3390/math7090850
Chicago/Turabian StyleJleli, Mohamed, and Bessem Samet. 2019. "A Lyapunov-Type Inequality for a Laplacian System on a Rectangular Domain with Zero Dirichlet Boundary Conditions" Mathematics 7, no. 9: 850. https://doi.org/10.3390/math7090850
APA StyleJleli, M., & Samet, B. (2019). A Lyapunov-Type Inequality for a Laplacian System on a Rectangular Domain with Zero Dirichlet Boundary Conditions. Mathematics, 7(9), 850. https://doi.org/10.3390/math7090850