Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source
Abstract
:1. Introduction
2. Some Auxiliary Results
3. Fourier Regularization Method and Results
4. Error Estimate
- The error estimate at 0 <x< 1.
- The error estimate at .
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Belin, Germany, 2010. [Google Scholar]
- Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 2000, 339, 1–77. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic: San Diego, CA, USA, 1999; Volume 198. [Google Scholar]
- Scalas, E.; Gorenflo, R.; Mainardi, F. Fractional calculus and continuous-time finance. Physica A 2000, 284, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Gorenflo, R.; Mainardi, F. Some recent advances in theory and simulation of fractional diffusion processes. J. Comput. Appl. Math. 2009, 229, 400–415. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Sokolov, I.M.; Klafter, J. From diffusion to anomalous diffusion: A century after Einsteins Brownian motion. Chaos 2005, 15, 1–77. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Fu, C.L. An iteration regularization for a time-fractional inverse diffusion problem. Appl. Math. Model. 2012, 36, 5642–5649. [Google Scholar] [CrossRef]
- Zheng, G.H.; Wei, T. A new regularization method for a Cauchy problem of the time fractional diffusion equation. Adv. Comput. Math. 2012, 36, 377–398. [Google Scholar] [CrossRef]
- Zheng, G.H.; Wei, T. Spectral regularization method for solving a time-fractional inverse diffusion problem. Appl. Math. Comput. 2011, 218, 396–405. [Google Scholar] [CrossRef]
- Zheng, G.H.; Wei, T. Two regularization methods for solving a Riesz-Feller space-fractional backward diffusion problem. Inverse Probl. 2010, 26, 115017. [Google Scholar] [CrossRef]
- Zheng, G.H.; Wei, T. Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation. J. Comput. Appl. Math. 2010, 233, 2631–2640. [Google Scholar] [CrossRef]
- Zheng, G.H.; Wei, T. A new regularization method for solving a time-fractional inverse diffusion problem. J. Math. Anal. Appl. 2011, 378, 418–431. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.T.; Guo, H.B.; Liu, X.H. An inverse problem for a fractional diffusion equation. J. Comput. Appl. Math. 2012, 236, 4474–4484. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Y.; Li, X.X. Landweber iterative method for identifying the initial value problem of the time-space fractional diffusion-wave equation. Numer. Algorithms 2019, 1–22. [Google Scholar] [CrossRef]
- Yang, F.; Sun, Y.R.; Li, X.X.; Huang, C.Y. The quasi-boundary value method for identifying the initial value of heat equation on a columnar symmetric domain. Numer. Algorithms 2019, 81, 623–639. [Google Scholar] [CrossRef]
- Yang, F.; Wang, N.; Li, X.X. A quasi-boundary regularization method for identifying the initial value of time-fractional diffusion equation on spherically symmetric domain. J. Inverse Ill Pose Probl. 2019. [Google Scholar] [CrossRef]
- Messaoudi, S.A. Blow up inn solutions of a quasilinear wave equation with variable exponent nonlineaities. Math. Methods Appl. Sci. 2017, 40, 6976–6986. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Bonfoh, A.; Mukiawa, B.S.; Enyi, C.D. The global attractor for a suspension bridge with memory and partially hinged boundary conditions. Z. Angew. Math. Mech. 2016, 97, 159–172. [Google Scholar] [CrossRef]
- Duy, H.D.N.; Huy, T.N.; Dinh, L.L.; Le, G.Q.T. Inverse problem for nonlinear backward space-fractional diffusion equation. J. Inverse Ill Pose Probl. 2016, 25, 423–443. [Google Scholar] [CrossRef]
- Tuan, N.H.; Duy, D.H.; Huy, T.N.; Dinh, H.L.; Nguyen, L.V.T.; Kirane, M. On a Riesz-Feller space fractional backward diffusion problem with a nonlinear source. J. Comput. Appl. Math. 2017, 312, 103–126. [Google Scholar] [CrossRef]
- Xiong, X.T.; Zhou, Q.; Hon, Y.C. An inverse problem for fractional diffusion equationin 2-dimensional case: Stability analysis and regularization. J. Math. Anal. Appl. 2012, 393, 185–199. [Google Scholar] [CrossRef]
- Qian, Z.; Fu, C.L.; Xiong, X.T.; Wei, T. Fourier truncation method for high order numerical derivatives. Appl. Math. Comput. 2006, 181, 940–948. [Google Scholar] [CrossRef]
- Yang, F.; Fu, C.L. Two regularization methods to identify time-dependent heat source through an internal measurement of temperature. Math. Comput. Model. 2011, 53, 793–804. [Google Scholar] [CrossRef]
- Yang, F.; Fu, C.L.; Li, X.X. The inverse source problem for time fractional diffusion equation: stability analysis and regularization. Inverse Probl. Sci. Eng. 2015, 23, 969–996. [Google Scholar] [CrossRef]
- Fu, C.L.; Xiong, X.T.; Qian, Z. Fourier regularization for a backward heat equation. J. Math. Anal. Appl. 2007, 331, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.L.; Zhang, Y.X.; Cheng, H.; Ma, Y.J. The a posteriori Fourier method for solving ill-posed problems. Inverse Probl. 2012, 28, 095002. [Google Scholar] [CrossRef]
- Fu, C.L.; Feng, X.L.; Qian, Z. The Fourier regularization for solving the Cauchy problem for the Helmholtz equation. Appl. Numer. Math. 2009, 59, 2625–2640. [Google Scholar] [CrossRef]
- Fu, C.L.; Xiong, X.T.; Fu, P. Fourier regularization method for solving thesurface heat flux from interior observations. Math. Comput. Model. 2005, 42, 489–498. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, P.; Li, X.X. The truncation method for the Cauchy problem of the inhomogeneous Helmholtz equation. Appl. Anal. 2019, 98, 991–1004. [Google Scholar] [CrossRef]
- Yang, F.; Fan, P.; Li, X.X. Fourier Truncation Regularization Method for a Three-Dimensional Cauchy Problem of the Modified Helmholtz Equation with Perturbed Wave Number. Mathematics 2019, 7, 705. [Google Scholar] [CrossRef]
- Doan, V.N.; Nguyen, H.T.; Khoa, V.A.; Vo, V.A. A note on the derivation of filter regularization operators for nonlinear evolution equations. Appl. Anal. 2018, 97, 3–12. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Fan, P.; Li, X.-X.; Ma, X.-Y. Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source. Mathematics 2019, 7, 865. https://doi.org/10.3390/math7090865
Yang F, Fan P, Li X-X, Ma X-Y. Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source. Mathematics. 2019; 7(9):865. https://doi.org/10.3390/math7090865
Chicago/Turabian StyleYang, Fan, Ping Fan, Xiao-Xiao Li, and Xin-Yi Ma. 2019. "Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source" Mathematics 7, no. 9: 865. https://doi.org/10.3390/math7090865
APA StyleYang, F., Fan, P., Li, X. -X., & Ma, X. -Y. (2019). Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source. Mathematics, 7(9), 865. https://doi.org/10.3390/math7090865