A Deformed Wave Equation and Huygens’ Principle
Abstract
:1. Introduction
2. Background
- (i)
- ;
- (ii)
- ;
- (iii)
- , where for .
3. The Deformed Wave Equation and Huygens’ Principle
- Let , and , satisfy , then does not satisfy Huygen’s principle. In other words, the solution is expressed as a sum of ⊛-convolution of f and g with distributions that are not supported entirely on the set .
- (1)
- The distribution satisfies the deformed wave equation, i.e.,
- (2)
- For ,
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hadamard, J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations; Dover Publications: New York, NY, USA, 1923. [Google Scholar]
- Ben Saïd, S. Huygens’ principle for the wave equation associated with the trigonometric Dunkl-Cherednik operators. Math. Res. Lett. 2006, 13, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Berest, Y.; Veselov, A.P. Huygens’ principle and integrability. Russ. Math. Surv. 1994, 49, 5–77. [Google Scholar] [CrossRef]
- Branson, T.; Ólafsson, G.; Schlichtkrull, H. Huygens’ Principle in Riemannian Symmetric Spaces. Math. Ann. 1995, 301, 445–462. [Google Scholar] [CrossRef]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; Interscience Publ.: New York, NY, USA, 1962; Volume II. [Google Scholar]
- Chalykh, O.A.; Feigin, M.V.; Veselov, A.P. New integrable generalizations Calogero-Moser Quantumproblem. J. Math. Phys. 1998, 39, 695–703. [Google Scholar] [CrossRef]
- Günther, P. Huygens’ Principle and Hyperbolic equations; Academic Press: Boston, MA, USA, 1988. [Google Scholar]
- Lagnese, J.E.; Stellmacher, K.L. A method of generating classes of Huygens’s operators. J. Math. Mech. 1967, 17, 461–472. [Google Scholar]
- Lax, P.D.; Phillips, R.S. Scattering Theory; Academic Press: New York, NY, USA; London, UK, 1967. [Google Scholar]
- McLenaghan, R.G. Huygens’ principle. Ann. Inst. Henri Poincaré 1982, 37, 211–236. [Google Scholar]
- Ørsted, B. The conformal invariance of Huygens’ principle. J. Diff. Geom. 1981, 16, 1–9. [Google Scholar] [CrossRef]
- Stellmacher, K. Ein Beispiel einer Huygensschen Differentialgleichung. Nachr. Akad. Wiss. Göttingen Math. 1953, 10, 133–138. [Google Scholar]
- Schimming, R. A review on Huygens’ principle for linear hyperbolic differential operators. In Proceedings of the International Symposium Group-Theoretical Methods in Mechanics, Novosibirsk, Russia, 25–29 August 1978. [Google Scholar]
- Ben Saïd, S.; Kobayashi, T.; Ørsted, B. Laguerre semigroup and Dunkl operators. Compos. Math. 2012, 148, 1265–1336. [Google Scholar] [CrossRef] [Green Version]
- De Bie, H.; Genest, V.; Vinet, L. Dirac-Dunkl equation on S2 and the Bannai-Ito algebra. Comm. Math. Phys. 2016, 344, 447–464. [Google Scholar] [CrossRef] [Green Version]
- Pascazio, S.; Pepe, F.V.; Pérez-Pardo, J.M. Huygens’ principle and Dirac-Weyl equation. Eur. Phys. J. Plus 2017, 132, 287. [Google Scholar] [CrossRef] [Green Version]
- Dunkl, C.F. Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 1989, 311, 167–183. [Google Scholar] [CrossRef]
- Rösler, M. Positivity of Dunkl’s intertwining operator. Duke Math. J. 1999, 98, 445–463. [Google Scholar] [CrossRef]
- Dunkl, C.F.; Xu, Y. Orthogonal Polynomials of Several Variables; Cambridge Univ. Press: Cambridge, UK, 2001. [Google Scholar]
- Amri, B.; Gaidi, M. Lp − Lq estimates for the solution of the Dunkl wave equation. Manuscripta Math. 2019, 159, 379–396. [Google Scholar] [CrossRef]
- Dai, F.; Ye, W. Almost everywhere convergence of Bochner-Riesz means with critical index for Dunkl transforms. J. Approx. Theory 2016, 205, 43–59. [Google Scholar] [CrossRef]
- Deleaval, L. On the boundedness of the Dunkl spherical maximal operator. J. Topol. Anal. 2016, 8, 475–495. [Google Scholar] [CrossRef]
- Gorbachev, D.V.; Ivanov, V.I.; Tikhonov, S.Y. Positive Lp-bounded Dunkl-type generalized translation operator and its applications. Constr. Approx. 2019, 49, 555–605. [Google Scholar] [CrossRef]
- De Jeu, M. The Dunkl transform. Invent. Math. 1993, 113, 147–162. [Google Scholar] [CrossRef]
- Mejjaoli, H. Dunkl-Schrödinger semigroups and applications. Appl. Anal. 2013, 92, 1597–1626. [Google Scholar] [CrossRef]
- Mejjaoli, H.; Trimèche, K. On a mean value property associated with the Dunkl Laplacian operator and applications. Integral Transform. Spec. Funct. 2001, 12, 279–302. [Google Scholar] [CrossRef]
- Mejjaoli, H. Nonlinear generalized Dunkl-wave equations and applications. J. Math. Anal. Appl. 2011, 375, 118–138. [Google Scholar] [CrossRef]
- Mejjaoli, H. Strichartz estimates for the Dunkl wave equation and application. J. Math. Anal. Appl. 2008, 346, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Thangavelu, S.; Xu, Y. Convolution operator and maximal function for the Dunkl transform. J. Anal. Math. 2005, 97, 25–55. [Google Scholar] [CrossRef] [Green Version]
- Trimèche, K. Paley-Wiener theorems for the Dunkl transform and Dunkl translation operators. Integral Transform. Spec. Funct. 2002, 13, 17–38. [Google Scholar] [CrossRef]
- Trimèche, K. Harmonic analysis on measures spaces attached to some Dunkl operators on ℝd and applications. J. Inequal. Spec. Funct. 2017, 8, 104–117. [Google Scholar]
- Gallardo, L.; Rejeb, C. A new mean value property for harmonic functions relative to the Dunkl Laplacian operator and applications. Trans. Am. Math. Soc. 2015, 368, 3727–3753. [Google Scholar] [CrossRef]
- Kobayashi, T.; Mano, G. The inversion formula and holomorphic extension of the minimal representation of the conformal group. In Harmonic Analysis, Group Representations, Automorphic Forms and Invariant Theory: In Honor of Roger Howe; Li, J.S., Tan, E.C., Wallach, N., Zhu, C.B., Eds.; World Scientific: Singapore, 2007; pp. 159–223. [Google Scholar]
- Dunkl, C.F. Hankel transforms associated to finite reflection groups. Contemp. Math. 1992, 138, 123–138. [Google Scholar]
- Mejjaoli, H. Wavelet-multipliers analysis in the framework of the k-Laguerre theory. Linear Multilinear Algebra 2019, 67, 70–93. [Google Scholar] [CrossRef]
- Johansen, T.R. Weighted inequalities and uncertainty principles for the (k,a)-generalized Fourier transform. Internat. J. Math. 2016, 27, 44. [Google Scholar] [CrossRef]
- Ben Saïd, S. Strichartz estimates for Schrödinger-Laguerre operators. Semigroup Forum 2015, 90, 251–269. [Google Scholar] [CrossRef] [Green Version]
- Ben Saïd, S.; Kobayashi, T.; Ørsted, B. Generalized Fourier transforms . C. R. Math. Acad. Sci. Paris 2009, 347, 1119–1124. [Google Scholar] [CrossRef]
- de Bie, H.; Oste, R.; van der Jeugt, J. Generalized Fourier transforms arising from the enveloping algebras of (2) and (1|2). Int. Math. Res. Not. IMRN 2016, 15, 4649–4705. [Google Scholar] [CrossRef] [Green Version]
- De Bie, H.; Ørsted, B.; Somberg, P.; Soucek, V. Dunkl operators and a family of realizations of (1|2). Trans. Am. Math. Soc. 2012, 364, 3875–3902. [Google Scholar] [CrossRef] [Green Version]
- de Bie, H.; Pan, L.; Constales, D. Explicit formulas for the Dunkl dihedral kernel and the (k,a)-generalized Fourier kernel. J. Math. Anal. Appl. 2018, 460, 900–926. [Google Scholar]
- Ben Saïd, S.; Deleaval, L. Translation operator and maximal operator for the (k,1)-generalized Fourier transform. J. Geom. Anal. 2019, in press. [Google Scholar] [CrossRef]
- Ben Saïd, S.; Ørsted, B. The wave equation for Dunkl operators. Indag. Math. (N.S.) 2005, 16, 351–391. [Google Scholar] [CrossRef] [Green Version]
- Howe, R.; Tan, E.C. Nonabelian Harmonic Analysis. Applications of SL(2,ℝ); Universitext; Springer: New York, NY, USA, 1992. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Saïd, S.; al-Blooshi, S.; al-Kaabi, M.; al-Mehrzi, A.; al-Saeedi, F. A Deformed Wave Equation and Huygens’ Principle. Mathematics 2020, 8, 10. https://doi.org/10.3390/math8010010
Ben Saïd S, al-Blooshi S, al-Kaabi M, al-Mehrzi A, al-Saeedi F. A Deformed Wave Equation and Huygens’ Principle. Mathematics. 2020; 8(1):10. https://doi.org/10.3390/math8010010
Chicago/Turabian StyleBen Saïd, Salem, Sara al-Blooshi, Maryam al-Kaabi, Aisha al-Mehrzi, and Fatima al-Saeedi. 2020. "A Deformed Wave Equation and Huygens’ Principle" Mathematics 8, no. 1: 10. https://doi.org/10.3390/math8010010
APA StyleBen Saïd, S., al-Blooshi, S., al-Kaabi, M., al-Mehrzi, A., & al-Saeedi, F. (2020). A Deformed Wave Equation and Huygens’ Principle. Mathematics, 8(1), 10. https://doi.org/10.3390/math8010010