Stability Condition of the Second-Order SSP-IMEX-RK Method for the Cahn–Hilliard Equation
Abstract
:1. Introduction
2. Second-Order SSP-IMEX-RK Method and Its Stability Condition
3. Numerical Experiments
3.1. Numerical Implementation
3.2. Convergence Test
3.3. Energy Stability of the Proposed Method
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Cahn, J.W.; Hilliard, J.E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 1958, 28, 258–267. [Google Scholar] [CrossRef]
- Chen, L.-Q. Phase-field models for microstructure evolution. Annu. Rev. Mater. Res. 2000, 32, 113–140. [Google Scholar] [CrossRef] [Green Version]
- Gomez, H.; Hughes, T.J.R. Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models. J. Comput. Phys. 2011, 230, 5310–5327. [Google Scholar] [CrossRef]
- Guan, Z.; Lowengrub, J.S.; Wang, C.; Wise, S.M. Second order convex splitting schemes for periodic nonlocal Cahn–Hilliard and Allen–Cahn equations. J. Comput. Phys. 2014, 277, 48–71. [Google Scholar] [CrossRef]
- Elliott, C.M.; Stuart, A.M. The global dynamics of discrete semilinear parabolic equations. SIAM J. Numer. Anal. 1993, 30, 1622–1663. [Google Scholar] [CrossRef]
- Eyre, D.J. Unconditionally gradient stable time marching the Cahn–Hilliard equation. MRS Proc. 1998, 529, 39–46. [Google Scholar] [CrossRef]
- Du, Q.; Nicolaides, R.A. Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 1991, 28, 1310–1322. [Google Scholar] [CrossRef]
- Yang, X. Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 2016, 327, 294–316. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Lee, H.G.; Lee, J.-Y. Unconditionally stable methods for gradient flow using Convex Splitting Runge–Kutta scheme. J. Comput. Phys. 2017, 347, 367–381. [Google Scholar] [CrossRef]
- Shen, J.; Xu, J.; Yang, J. The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 2018, 353, 407–416. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, J. Energy-stable Runge–Kutta schemes for gradient flow models using the energy quadratization approach. Appl. Math. Lett. 2019, 94, 224–231. [Google Scholar] [CrossRef]
- Gong, Y.; Zhao, J.; Wang, Q. Arbitrarily high-order unconditionally energy stable SAV schemes for gradient flow models. Comput. Phys. Commun. 2019, in press. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Zhao, J.; Wang, Q. Arbitrarily high-order linear schemes for gradient flow models. arXiv 2019, arXiv:1910.07211. [Google Scholar]
- Song, H. Energy SSP-IMEX Runge–Kutta methods for the Cahn–Hilliard equation. J. Comput. Appl. Math. 2016, 292, 576–590. [Google Scholar] [CrossRef]
- Ascher, U.M.; Ruuth, S.J.; Wetton, B.T.R. Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 1995, 32, 797–823. [Google Scholar] [CrossRef]
- Ascher, U.M.; Ruuth, S.J.; Spiteri, R.J. Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 1997, 25, 151–167. [Google Scholar] [CrossRef]
- Shu, C.-W.; Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 1988, 77, 439–471. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, S.; Shu, C.-W. Total variation diminishing Runge-Kutta schemes. Math. Comp. 1998, 67, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, S.; Shu, C.-W.; Tadmor, E. Strong stability-preserving high-order time discretization methods. SIAM Rev. 2001, 43, 89–112. [Google Scholar] [CrossRef]
- Wang, C.; Wise, S.M. An energy stable and convergent finite-difference scheme for the modified phase field crystal equation. SIAM J. Numer. Anal. 2011, 49, 945–969. [Google Scholar] [CrossRef]
- Shin, J.; Lee, H.G.; Lee, J.-Y. First and second order numerical methods based on a new convex splitting for phase-field crystal equation. J. Comput. Phys. 2016, 327, 519–542. [Google Scholar] [CrossRef]
- Lee, H.G.; Shin, J.; Lee, J.-Y. First- and second-order energy stable methods for the modified phase field crystal equation. Comput. Appl. Mech. Eng. 2017, 321, 1–17. [Google Scholar] [CrossRef]
- Lee, H.G. An energy stable method for the Swift–Hohenberg equation with quadratic–cubic nonlinearity. Comput. Methods Appl. Mech. Eng. 2019, 343, 40–51. [Google Scholar] [CrossRef]
- Barrett, J.W.; Blowey, J.F. An error bound for the finite element approximation of the Cahn–Hilliard equation with logarithmic free energy. Numer. Math. 1995, 72, 1–20. [Google Scholar] [CrossRef]
- Barrett, J.W.; Blowey, J.F. An error bound for the finite element approximation of a model for phase separation of a multi-component alloy. IMA J. Numer. Anal. 1996, 16, 257–287. [Google Scholar] [CrossRef]
- Chen, W.; Wang, C.; Wang, X.; Wise, S.M. Positivity-preserving, energy stable numerical schemes for the Cahn-Hilliard equation with logarithmic potential. J. Comput. X 2019, 3, 100031. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.G. Stability Condition of the Second-Order SSP-IMEX-RK Method for the Cahn–Hilliard Equation. Mathematics 2020, 8, 11. https://doi.org/10.3390/math8010011
Lee HG. Stability Condition of the Second-Order SSP-IMEX-RK Method for the Cahn–Hilliard Equation. Mathematics. 2020; 8(1):11. https://doi.org/10.3390/math8010011
Chicago/Turabian StyleLee, Hyun Geun. 2020. "Stability Condition of the Second-Order SSP-IMEX-RK Method for the Cahn–Hilliard Equation" Mathematics 8, no. 1: 11. https://doi.org/10.3390/math8010011
APA StyleLee, H. G. (2020). Stability Condition of the Second-Order SSP-IMEX-RK Method for the Cahn–Hilliard Equation. Mathematics, 8(1), 11. https://doi.org/10.3390/math8010011