A New Newton Method with Memory for Solving Nonlinear Equations
Abstract
:1. Introduction
2. Modified Newton Method
3. New Newton Method with Memory
- Formula 1:
- Formula 2:
- Formula 3:
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Traub, J.F. Iterative Method for the Solution of Equations; Prentice hall: New York, NY, USA, 1964. [Google Scholar]
- Džunić, J. Modified Newton’s method with memory. Ser. Math. Inform. 2013, 28, 429–441. [Google Scholar]
- McDougall, T.J.; Wotherspoon, S.J. A simple modification of Newton’s method to achieve convergence of order . Appl. Math. Lett. 2014, 29, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Chicharro, F.I.; Cordero, A.; Torregrosa, J.R. Dynamics of iterative families with memory based on weight functions procedure. J. Comput. Appl. Math. 2019, 354, 286–298. [Google Scholar] [CrossRef]
- Džunić, J.; Petković, M.S.; Petković, L.D. Three-point methods with and without memory for solving nonlinear equations. Appl. Math. Comput. 2012, 218, 4917–4927. [Google Scholar] [CrossRef]
- Cordero, A.; Lotfi, T.; Bakhtiari, P.; Torregrosa, J.R. An efficient two-parametric family with memory for nonlinear equations. Numer. Algor. 2015, 68, 323–335. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. An Ostrowski-type method with memory using a novel self-accelerating parameter. J. Comput. Appl. Math. 2018, 330, 710–720. [Google Scholar] [CrossRef]
- Wang, X. A new accelerating technique applied to a variant of Cordero-Torregrosa method. J. Comput. Appl. Math. 2018, 330, 695–709. [Google Scholar] [CrossRef]
- Wang, X. A family of Newton-type iterative methods using some special self-accelerating parameters. Int. J. Comput. Math. 2018, 95, 2112–2127. [Google Scholar] [CrossRef]
- Soleymani, F.; Lotfi, T.; Tavakoli, E.; Khaksar Haghani, F. Several iterative methods with memory using self-accelerators. Appl. Math. Comp. 2015, 254, 452–458. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinbolt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, MY, USA, 1970. [Google Scholar]
- Alefeld, G.; Herzberger, J. Introduction to Interval Computation; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Cordero, A.; Torregrosa, J.R. Variants of Newton’s Method using fifth-order quadrature formulas. Appl. Math. Comput. 2007, 190, 686–698. [Google Scholar] [CrossRef]
Methods | |||||
---|---|---|---|---|---|
NM | 0.94848 × 10−1 | 0.11122 × 10−1 | 0.14567 × 10−3 | 0.24760 × 10−7 | 2.0021081 |
(4) | 0.88625 × 10−1 | 0.87717 × 10−2 | 0.82591 × 10−4 | 0.72764 × 10−8 | 2.0013387 |
TRM | 0.12906 | 0.59074 × 10−2 | 0.57541 × 10−5 | 0.26531 × 10−12 | 2.4361321 |
DZM | 0.14873 | 0.75261 × 10−2 | 0.10585 × 10−4 | 0.11429 × 10−11 | 2.4428540 |
MWM | 0.10080 | 0.53146 × 10−2 | 0.50328 × 10−5 | 0.21028 × 10−12 | 2.4404239 |
((14), (11)) | 0.95990 × 10−1 | 0.14885 × 10−2 | 0.27327 × 10−6 | 0.15929 × 10−15 | 2.4716282 |
((14), (12)) | 0.96476 × 10−1 | 0.10035 × 10−2 | 0.79743 × 10−7 | 0.63708 × 10−17 | 2.4629052 |
((14), (13)) | 0.96229 × 10−1 | 0.12496 × 10−2 | 0.45916 × 10−7 | 0.86370 × 10−18 | 2.4185119 |
Methods | |||||
---|---|---|---|---|---|
NM | 0.70105 × 10−1 | 0.18137 × 10−2 | 0.12688 × 10−5 | 0.62159 × 10−12 | 1.9998571 |
(4) | 0.12622 × 10−1 | 0.46131 × 10−4 | 0.60882 × 10−9 | 0.10605 × 10−18 | 1.9999960 |
TRM | 0.75217 × 10−1 | 0.39197 × 10−3 | 0.16457 × 10−8 | 0.15821 × 10−21 | 2.4209303 |
DZM | 0.77161 × 10−1 | 0.42001 × 10−3 | 0.19382 × 10−8 | 0.23514 × 10−21 | 2.4206129 |
MWM | 0.71467 × 10−1 | 0.45293 × 10−3 | 0.25703 × 10−8 | 0.46040 × 10−21 | 2.4297966 |
((14), (11)) | 0.12626 × 10−1 | 0.50711 × 10−4 | 0.88637 × 10−11 | 0.20764 × 10−26 | 2.3130350 |
((14), (12)) | 0.12624 × 10−1 | 0.48520 × 10−4 | 0.64621 × 10−11 | 0.44654 × 10−27 | 2.3504314 |
((14), (13)) | 0.12625 × 10−1 | 0.49664 × 10−4 | 0.77151 × 10−11 | 0.10957 × 10−26 | 2.3275581 |
Methods | |||||
---|---|---|---|---|---|
NM | 0.30435 | 0.55801 × 10−1 | 0.29660 × 10−2 | 0.84137 × 10−5 | 2.0000000 |
(4) | 0.34603 | 0.72828 × 10−1 | 0.56224 × 10−2 | 0.33441 × 10−4 | 2.0000000 |
TRM | 0.30327 | 0.26131 × 10−1 | 0.13826 × 10−3 | 0.46450 × 10−9 | 2.4143040 |
DZM | 0.22084 | 0.15866 × 10−1 | 0.40011 × 10−4 | 0.23479 × 10−10 | 2.4143179 |
MWM | 1.0781 | 0.76166 | 0.49633 × 10−1 | 0.29384 × 10−2 | 2.4617091 |
((14), (11)) | 0.41260 | 0.11831 × 10−1 | 0.79447 × 10−4 | 0.46393 × 10−10 | 2.4100989 |
((14), (12)) | 0.42135 | 0.31627 × 10−2 | 0.44595 × 10−5 | 0.83226 × 10−14 | 2.4114555 |
((14), (13)) | 0.41681 | 0.76732 × 10−2 | 0.30342 × 10−4 | 0.20993 × 10−11 | 2.4100124 |
Methods | |||||
---|---|---|---|---|---|
NM | 0.75636 × 10−2 | 0.87698 × 10−4 | 0.11555 × 10−7 | 0.20057 × 10−15 | 2.0000262 |
(4) | 0.79660 × 10−2 | 0.10389 × 10−3 | 0.17298 × 10−7 | 0.47939 × 10−15 | 2.0000322 |
TRM | 0.23918 × 10−1 | 0.92015 × 10−4 | 0.45676 × 10−9 | 0.43316 × 10−22 | 2.4552455 |
DZM | 0.35531 × 10−1 | 0.18403 × 10−3 | 0.27090 × 10−8 | 0.30474 × 10−20 | 2.4728272 |
MWM | 0.76346 × 10−2 | 0.16742 × 10−4 | 0.57306 × 10−11 | 0.12575 × 10−26 | 2.4218493 |
((14), (11)) | 0.80886 × 10−2 | 0.18633 × 10−4 | 0.38111 × 10−11 | 0.12863 × 10−27 | 2.4624220 |
((14), (12)) | 0.80871 × 10−2 | 0.17135 × 10−4 | 0.96295 × 10−11 | 0.63623 × 10−26 | 2.4286928 |
((14), (13)) | 0.80878 × 10−2 | 0.17881 × 10−4 | 0.34831 × 10−11 | 0.37567 × 10−27 | 2.3794489 |
Methods | |||||
---|---|---|---|---|---|
NM | 0.27263 × 10−1 | 0.20801 × 10−3 | 0.11512 × 10−7 | 0.35250 × 10−16 | 2.0000391 |
(4) | 0.16256 × 10−4 | 0.43857 × 10−10 | 0.31925 × 10−21 | 0.16916 × 10−43 | 2.0000000 |
TRM | 0.28294 × 10−1 | 0.20717 × 10−4 | 0.87450 × 10−12 | 0.11208 × 10−29 | 2.4262050 |
DZM | 0.28942 × 10−1 | 0.23529 × 10−4 | 0.11550 × 10−11 | 0.22203 × 10−29 | 2.4238736 |
MWM | 0.27506 × 10−1 | 0.34876 × 10−4 | 0.20046 × 10−11 | 0.99755 × 10−29 | 2.3897642 |
((14), (11)) | 0.16256 × 10−4 | 0.40870 × 10−10 | 0.11705 × 10−25 | 0.19533 × 10−62 | 2.3661816 |
((14), (12)) | 0.16256 × 10−4 | 0.43873 × 10−10 | 0.15341 × 10−25 | 0.50629 × 10−62 | 2.3602927 |
((14), (13)) | 0.16256 × 10−4 | 0.42412 × 10−10 | 0.13516 × 10−25 | 0.32510 × 10−62 | 2.4126796 |
Methods | |||||
---|---|---|---|---|---|
NM | 0.29535 | 0.49290 × 10−2 | 0.14646 × 10−5 | 0.12945 × 10−12 | 2.0000000 |
(4) | 0.61660 × 10−1 | 0.14948 × 10−3 | 0.88593 × 10−9 | 0.31121 × 10−19 | 2.0000000 |
TRM | 0.27891 | 0.56316 × 10−3 | 0.30706 × 10−9 | 0.19340 × 10−24 | 2.4145853 |
DZM | 0.25753 | 0.45021 × 10−3 | 0.18172 × 10−9 | 0.54152 × 10−25 | 2.4146224 |
MWM | 0.30214 | 0.18597 × 10−2 | 0.23420 × 10−8 | 0.37578 × 10−22 | 2.4118507 |
((14), (11)) | 0.61558 × 10−1 | 0.25106 × 10−3 | 0.11263 × 10−9 | 0.65893 × 10−25 | 2.4137298 |
((14), (12)) | 0.61726 × 10−1 | 0.83517 × 10−4 | 0.57140 × 10−11 | 0.35958 × 10−28 | 2.4138161 |
((14), (13)) | 0.61651 × 10−1 | 0.15848 × 10−3 | 0.30362 × 10−10 | 0.24693 × 10−26 | 2.4136285 |
Methods | |||||
---|---|---|---|---|---|
NM | 0.51377 × 10−1 | 0.29778 × 10−2 | 0.94541 × 10−5 | 0.94955 × 10−10 | 2.0006167 |
(4) | 0.48084 × 10−1 | 0.23460 × 10−2 | 0.53104 × 10−5 | 0.27139 × 10−10 | 2.0004304 |
TRM | 0.18438 | 0.77549 × 10−2 | 0.11858 × 10−4 | 0.12280 × 10−11 | 2.4807622 |
DZM | 0.21488 | 0.93015 × 10−2 | 0.19515 × 10−4 | 0.39877 × 10−11 | 2.4978160 |
MWM | 0.53263 × 10−1 | 0.11016 × 10−2 | 0.95638 × 10−7 | 0.12209 × 10−16 | 2.4360930 |
((14), (11)) | 0.50758 × 10−1 | 0.32220 × 10−3 | 0.62828 × 10−8 | 0.10908 × 10−19 | 2.4969174 |
((14), (12)) | 0.50874 × 10−1 | 0.43838 × 10−3 | 0.12463 × 10−7 | 0.86553 × 10−19 | 2.4544229 |
((14), (13)) | 0.50815 × 10−1 | 0.37972 × 10−3 | 0.12832 × 10−9 | 0.89731 × 10−24 | 2.1874410 |
Methods | |||||
---|---|---|---|---|---|
NM | 0.16079 | 0.83050 × 10−1 | 0.15408 × 10−1 | 0.40910 × 10−3 | 2.0000000 |
(4) | 0.15943 | 0.85941 × 10−1 | 0.17723 × 10−1 | 0.57918 × 10−3 | 2.0000000 |
TRM | 0.26086 | 0.10572 | 0.12367 × 10−1 | 0.48440 × 10−4 | 2.4142058 |
DZM | 0.28894 | 0.11489 | 0.16070 × 10−1 | 0.88980 × 10−4 | 2.4141992 |
MWM | 0.18521 | 0.69823 × 10−1 | 0.46207 × 10−2 | 0.58955 × 10−5 | 2.4141998 |
((14), (11)) | 0.26973 | 0.60674 × 10−2 | 0.75745 × 10−5 | 0.36530 × 10−12 | 2.4142457 |
((14), (12)) | 0.26546 | 0.17813 × 10−2 | 0.72310 × 10−5 | 0.52756 × 10−12 | 2.4141430 |
((14), (13)) | 0.26758 | 0.38913 × 10−2 | 0.11303 × 10−4 | 0.88936 × 10−12 | 2.4141334 |
Methods | |||||
---|---|---|---|---|---|
NM | 0.12163 × 10−1 | 0.68924 × 10−4 | 0.22050 × 10−8 | 0.22568 × 10−17 | 2.0000021 |
(4) | 0.94218 × 10−2 | 0.32385 × 10−4 | 0.38193 × 10−9 | 0.53121 × 10−19 | 2.0000006 |
TRM | 0.30098 × 10−1 | 0.30992 × 10−4 | 0.61645 × 10−11 | 0.25374 × 10−27 | 2.4451069 |
DZM | 0.51419 × 10−1 | 0.91890 × 10−4 | 0.91924 × 10−10 | 0.16729 × 10−24 | 2.4567254 |
MWM | 0.12244 × 10−1 | 0.11606 × 10−4 | 0.29500 × 10−12 | 0.21862 × 10−30 | 2.3871597 |
((14), (11)) | 0.94532 × 10−2 | 0.10315 × 10−5 | 0.27668 × 10−14 | 0.22492 × 10−35 | 2.4604765 |
((14), (12)) | 0.94518 × 10−2 | 0.23608 × 10−5 | 0.75329 × 10−14 | 0.19241 × 10−34 | 2.4237873 |
((14), (13)) | 0.94525 × 10−2 | 0.17017 × 10−5 | 0.17253 × 10−14 | 0.36236 × 10−36 | 2.4102325 |
Methods | |||||
---|---|---|---|---|---|
NM | 0.64944 × 10−2 | 0.29855 × 10−4 | 0.63224 × 10−9 | 0.28353 × 10−18 | 1.9999992 |
(4) | 0.55399 × 10−2 | 0.18642 × 10−4 | 0.21175 × 10−9 | 0.27319 × 10−19 | 1.9999991 |
TRM | 0.81871 × 10−2 | 0.31872 × 10−5 | 0.41565 × 10−13 | 0.27704 × 10−32 | 2.4320824 |
DZM | 0.97808 × 10−2 | 0.45593 × 10−5 | 0.10149 × 10−12 | 0.23626 × 10−31 | 2.4348947 |
MWM | 0.65206 × 10−2 | 0.36644 × 10−5 | 0.49133 × 10−13 | 0.44736 × 10−32 | 2.4185946 |
((14), (11)) | 0.55571 × 10−2 | 0.14647 × 10−5 | 0.13672 × 10−13 | 0.33166 × 10−33 | 2.4427552 |
((14), (12)) | 0.55575 × 10−2 | 0.10649 × 10−5 | 0.13873 × 10−14 | 0.43888 × 10−36 | 2.4197491 |
((14), (13)) | 0.55573 × 10−2 | 0.12658 × 10−5 | 0.61333 × 10−14 | 0.34024 × 10−34 | 2.4361645 |
NM | (4) | TRM | DZM | MWM | (14), (11) | (14), (12) | (14), (13) | |
---|---|---|---|---|---|---|---|---|
0.5134 | 0.5031 | 0.5659 | 0.5744 | 0.5556 | 0.4319 | 0.4766 | 0.4766 | |
0.5878 | 0.5850 | 0.7844 | 0.7350 | 0.6500 | 0.5728 | 0.5650 | 0.5566 | |
0.8081 | 0.8681 | 0.9600 | 1.0516 | 1.1266 | 0.8572 | 0.7184 | 0.6994 | |
1.2675 | 1.2962 | 1.9419 | 1.8603 | 1.4175 | 1.0644 | 1.0656 | 1.0181 | |
0.5203 | 0.4634 | 0.7459 | 0.6128 | 0.5431 | 0.4503 | 0.4487 | 0.4409 | |
0.6728 | 0.6025 | 0.8975 | 0.7478 | 0.7506 | 0.6663 | 0.6787 | 0.5956 | |
0.5103 | 0.5294 | 0.6100 | 0.6184 | 0.5731 | 0.4772 | 0.4738 | 0.4781 | |
1.4609 | 1.3928 | 1.6875 | 1.8528 | 1.6544 | 1.0784 | 1.0856 | 1.0734 | |
0.6159 | 0.4653 | 0.4900 | 0.5288 | 0.3941 | 0.4475 | 0.3847 | 0.3697 | |
0.9247 | 0.8631 | 1.2713 | 1.3084 | 1.1272 | 0.7844 | 0.7681 | 0.7512 | |
Average time | 0.7882 | 0.7569 | 0.9954 | 0.9890 | 0.8792 | 0.6830 | 0.6665 | 0.6460 |
NM | (4) | TRM | DZM | MWM | (14), (11) | (14), (12) | (14), (13) | |
---|---|---|---|---|---|---|---|---|
0.5566 | 0.5756 | 0.6578 | 0.6913 | 0.6338 | 0.5537 | 0.5613 | 0.5303 | |
0.6709 | 0.6722 | 0.8000 | 0.7675 | 0.6566 | 0.6550 | 0.6359 | 0.6231 | |
0.9303 | 0.9456 | 0.9384 | 0.9900 | 1.2163 | 0.8447 | 0.8584 | 0.8013 | |
1.3044 | 1.2966 | 1.8487 | 2.0506 | 1.6509 | 1.1947 | 1.1206 | 1.1788 | |
0.5759 | 0.5263 | 0.8594 | 0.7037 | 0.6691 | 0.5147 | 0.5144 | 0.5031 | |
0.7769 | 0.7506 | 0.9684 | 0.7653 | 0.6759 | 0.6763 | 0.6866 | 0.6728 | |
0.5622 | 0.5491 | 0.7256 | 0.6763 | 0.6300 | 0.5587 | 0.5622 | 0.5128 | |
1.5131 | 1.5178 | 1.7459 | 1.8494 | 1.7747 | 1.1788 | 1.2019 | 1.1725 | |
0.4113 | 0.4203 | 0.5397 | 0.4684 | 0.3684 | 0.3419 | 0.3322 | 0.3372 | |
1.0009 | 0.8831 | 1.4750 | 1.4819 | 1.2506 | 0.8875 | 0.8728 | 0.8816 | |
Average time | 0.7372 | 0.7192 | 0.9620 | 0.9454 | 0.8310 | 0.6561 | 0.6488 | 0.6412 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Tao, Y. A New Newton Method with Memory for Solving Nonlinear Equations. Mathematics 2020, 8, 108. https://doi.org/10.3390/math8010108
Wang X, Tao Y. A New Newton Method with Memory for Solving Nonlinear Equations. Mathematics. 2020; 8(1):108. https://doi.org/10.3390/math8010108
Chicago/Turabian StyleWang, Xiaofeng, and Yuxi Tao. 2020. "A New Newton Method with Memory for Solving Nonlinear Equations" Mathematics 8, no. 1: 108. https://doi.org/10.3390/math8010108
APA StyleWang, X., & Tao, Y. (2020). A New Newton Method with Memory for Solving Nonlinear Equations. Mathematics, 8(1), 108. https://doi.org/10.3390/math8010108