A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems
Abstract
:1. Introduction
2. Multi-Dimensional Case
- , for each permutation of ,
- (a)
- (b)
- .
Specializations
3. Local Convergence Analysis
4. Numerical Experimentation
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grosan, C.; Abraham, A. A new approach for solving nonlinear equations systems. IEEE Trans. Syst. Man Cybernet Part A Syst. Hum. 2008, 38, 698–714. [Google Scholar] [CrossRef]
- Lin, Y.; Bao, L.; Jia, X. Convergence analysis of a variant of the Newton method for solving nonlinear equations. Comput. Math. Appl. 2010, 59, 2121–2127. [Google Scholar] [CrossRef] [Green Version]
- Moré, J.J. A Collection of Nonlinear Model Problems; Allgower, E.L., Georg, K., Eds.; Computational Solution of Nonlinear Systems of Equations Lectures in Applied Mathematics; American Mathematical Society: Providence, RI, USA, 1990; Volume 26, pp. 723–762. [Google Scholar]
- Awawdeh, F. On new iterative method for solving systems of nonlinear equations. Numer. Algor. 2010, 54, 395–409. [Google Scholar] [CrossRef]
- Tsoulos, I.G.; Stavrakoudis, A. On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods. Nonlinear Anal. Real World Appl. 2010, 11, 2465–2471. [Google Scholar] [CrossRef]
- Argyros, I.K. Convergence and Application of Newton-Type Iterations; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Argyros, I.K.; Hilout, S. Numerical Methods in Nonlinear Analysis; World Scientific Publ. Comp.: Hackensack, NJ, USA, 2013. [Google Scholar]
- Petković, M.S.; Neta, B.; Petković, L.D.; Džunić, J. Multi-Point Methods for Solving Nonlinear Equations; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice- Hall Series in Automatic Computation: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; Academic Press: New York, NY, USA, 1970. [Google Scholar]
- Abad, M.F.; Cordero, A.; Torregrosa, J.R. A family of seventh-order schemes for solving nonlinear systems. Bull. Math. Soc. Sci. Math. Roum. 2014, 57, 133–145. [Google Scholar]
- Artidiello, S.; Cordero, A.; Torregrosa, J.R.; Vassileva, M.P. Multidimensional generalization of iterative methods for solving nonlinear problems by means of weight-function procedure. Appl. Math. Comput. 2015, 268, 1064–1071. [Google Scholar] [CrossRef] [Green Version]
- Cordero, A.; Maimó, J.G.; Torregrosa, J.R.; Vassileva, M.P. Solving nonlinear problems by Ostrowski-Chun type parametric families. J. Math. Chem. 2014, 52, 430–449. [Google Scholar]
- Sharma, J.R.; Gua, R.K.; Sharma, R. An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algor. 2013, 2, 307–323. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, T. A family of Steffensen type methods with seventh-order convergence. Numer. Algor. 2013, 62, 429–444. [Google Scholar] [CrossRef]
- Cordero, A.; Hueso, J.L.; Martínez, E.; Torregrosa, J.R. A modified Newton-Jarratt’s composition. Numer. Algor. 2010, 55, 87–99. [Google Scholar] [CrossRef]
- Beyer, W.A.; Ebanks, B.R.; Qualls, C.R. Convergence rates and convergence-order profiles for sequences. Acta Appl. Math. 1990, 20, 267–284. [Google Scholar] [CrossRef]
- Potra, F.A. On Q-order and R-order of convergence. J. Optim. Theory Appl. 1989, 63, 415–431. [Google Scholar] [CrossRef]
- Weerakoon, S.; Fernando, T.G.I. A variant of Newton’s method with accelerated third order convergence. Appl. Math. Lett. 2000, 13, 87–93. [Google Scholar] [CrossRef]
- Hueso, J.L.; Martínez, E.; Teruel, C. Convergence, efficiency and dynamics of new fourth and sixth-order families of iterative methods for nonlinear system. J. Comput. Appl. Math. 2015, 275, 412–420. [Google Scholar] [CrossRef]
- Lotfi, T.; Bakhtiari, P.; Cordero, A.; Mahdiani, K.; Torregrosa, J.R. Some new efficient multipoint iterative methods for solving nonlinear systems of equations. Int. J. Comput. Math. 2015, 92, 1921–1934. [Google Scholar] [CrossRef] [Green Version]
- Grau-Sánchez, M.; Grau, Á.; Noguera, M. Ostrowski type methods for solving systems of nonlinear equations. Appl. Math. Comput. 2011, 218, 2377–2385. [Google Scholar] [CrossRef]
- Sharma, J.R.; Arora, H. Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 2014, 51, 193–210. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Bakhtiari, P.; Cordero, A.; Torregrosa, J.R.; Lotfi, T. New efficient methods for solving nonlinear systems of equations with arbitrary even order. Appl. Math. Comput. 2016, 287–288, 94–103. [Google Scholar] [CrossRef]
- Soleymani, F.; Lotfi, T.; Bakhtiari, P. A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 2014, 8, 1001–1015. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y. An efficient sixth-order Newton-type method for solving nonlinear systems. Algorithms 2017, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Alaidarous, E.S.; Ullah, M.Z.; Ahmad, F.; Al-Fhaid, A.S. An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs. J. Appl. Math. 2013, 2013, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gelfand, I.M. Some problems in the theory of quasi-linear equations. Trans. Am. Math. Soc. Ser. 1963, 2, 295–381. [Google Scholar]
- Wan, Y.Q.; Guo, Q.; Pan, N. Thermo-electro-hydrodynamic model for electrospinning process. Int. J. Nonlinear Sci. Numer. Simul. 2004, 5, 5–8. [Google Scholar] [CrossRef]
- Jacobsen, J.; Schmitt, K. The Liouville Bratu Gelfand problem for radial operators. J. Diff. Equat. 2002, 184, 283–298. [Google Scholar] [CrossRef] [Green Version]
- Jalilian, R. Non-polynomial spline method for solving Bratu’s problem. Comput. Phys. Commun. 2010, 181, 1868–1872. [Google Scholar] [CrossRef]
- Sauer, T. Numerical Analysis, 2nd ed.; Pearson: Harlow, UK, 2012. [Google Scholar]
Methods | ||||||
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 |
Methods | ||||||
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 |
i | ||
---|---|---|
0 | ||
1 | ||
2 | ||
3 |
Methods | ||||||
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 |
j | ||
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 |
Methods | ||||||
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 |
Methods | ||||||
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | ||||||
3 | ||||||
1 | ||||||
2 | 3.1 | |||||
3 | ||||||
1 | ||||||
2 | ||||||
3 |
Schemes | Distinct parameters that appease the Theorem 1 | |||||
---|---|---|---|---|---|---|
Example 1 | 39.4198 | 21.3660 | 28.0788 | 27.8556 | 42.7671 | 27.7756 | 22.3137 | 18.5871 | 13.2373 | 13.0102 |
Example 2 | 17.40530 | 8.03168 | 5.59796 | 11.14688 | 14.15601 | 10.18220 | 7.79853 | 7.95962 | 5.76506 | 5.75208 |
Example 3 | 1.29392 | 0.54339 | 0.57942 | 2.48477 | 0.90264 | 0.94667 | 0.53439 | 0.20717 | 0.19013 | 0.18615 |
Example 4 | 28.05384 | 14.07596 | 14.08696 | 82.84556 | 27.91375 | 27.78366 | 13.98790 | 0.10908 | 0.10708 | 0.10507 |
Example 5 | 51.16305 | 26.15242 | 22.25168 | 53.57176 | 53.92799 | 33.67275 | 27.28121 | 28.15583 | 14.22802 | 8.03466 |
109.28202 | 70.16949 | 70.59480 | 177.90459 | 139.66752 | 100.41370 | 72.91573 | 55.01879 | 33.52763 | 27.08812 | |
21.856405 | 14.033898 | 11.765800 | 35.580918 | 27.933505 | 20.082739 | 14.583146 | 11.003757 | 6.705525 | 5.417624 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behl, R.; Argyros, I.K. A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems. Mathematics 2020, 8, 271. https://doi.org/10.3390/math8020271
Behl R, Argyros IK. A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems. Mathematics. 2020; 8(2):271. https://doi.org/10.3390/math8020271
Chicago/Turabian StyleBehl, Ramandeep, and Ioannis K. Argyros. 2020. "A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems" Mathematics 8, no. 2: 271. https://doi.org/10.3390/math8020271
APA StyleBehl, R., & Argyros, I. K. (2020). A New Higher-Order Iterative Scheme for the Solutions of Nonlinear Systems. Mathematics, 8(2), 271. https://doi.org/10.3390/math8020271