Geodesic Vector Fields on a Riemannian Manifold
Abstract
:1. Introduction
- On Euclidean space , the position vector field , satisfies , therefore is a geodesic vector field with potential function .
- Consider unit hypersphere in the Euclidean space . Then, the restriction of coordinate vector field on to can be expressed as
- Concircular vector fields on Riemannian manifolds have been introduced by A. Fialkow (cf. [2,3]). A vector field on a Riemannian manifold is said to be a concircular vector field if for any smooth vector field X on M, where is a smooth function on M. Thus, a concircular vector field satisfies , that is, a concircular vector field is a geodesic vector field. It is well known that concircular vector fields play a vital role in the theory of projective and conformal transformations. Moreover, concircular vector fields have applications in general relativity, as for instance trajectories of time-like concircular fields in the de Sitter space determine the world lines of receding or colliding galaxies satisfying the Weyl hypothesis (cf. [4]). Therefore, we could expect that geodesic vector fields also have the scope of applications in general relativity. For example, global questions about the existence of these vector fields were studied in [5,6,7,8,9,10].
- Another interesting example comes from Yamabe solitons (cf. [11,12]). Let be an n-dimensional Yamabe soliton. Then the soliton field satisfies
- Recall that an Eikonal equation is a nonlinear partial differential equation
2. Preliminaries
3. A Characterization of Euclidean Spaces
- 1.
- There exists a non-trivial geodesic vector field ξ with potential function ρ with the properties that is constant along the integral curves of ξ and Ricci curvature satisfies
- 2.
- is isometric to Euclidean space .
4. A Characterization of -Spheres
- 1.
- There exists a non-trivial geodesic vector field ξ with potential function ρ and Ricci curvature satisfies
- 2.
- is isometric to n-sphere .
Author Contributions
Funding
Conflicts of Interest
References
- Mikeš, J.; Vanžurová, A. Reconstruction of an affine connection in generalized Fermi coordinates. Bull. Malays. Math. Sci. Soc. 2017, 40, 205–213. [Google Scholar] [CrossRef]
- Fialkow, A. Conformal geodesics. Trans. Amer. Math. Soc. 1939, 45, 443–473. [Google Scholar] [CrossRef]
- Yano, K. Concircular Geometry. Proc. Imp. Acad. Tokyo 1940, 16, 195–200. [Google Scholar] [CrossRef]
- Takeno, H. Concircular scalar field in spherically symmetric space-times I. Tensor 1967, 20, 167–176. [Google Scholar]
- Evtushik, L.E.; Hinterleitner, I.; Guseva, N.I.; Mikeš, J. Conformal mappings onto Einstein spaces. Russ. Math. 2016, 60, 5–9. [Google Scholar] [CrossRef]
- Hinterleitner, I.; Guseva, N.; Mikeš, J. On conformal mappings onto compact Einstein manifolds. Geom. Integr. Quantization 2018, 19, 132–139. [Google Scholar] [CrossRef]
- Mikeš, J. Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. 1996, 78, 311–333. [Google Scholar] [CrossRef]
- Mikeš, J.; Chodorová, M. On concircular and torse-forming vector fields on compact manifolds. Acta Math. Acad. Paedagog. Nyházi. 2010, 26, 329–335. [Google Scholar]
- Mikeš, J.; Hinterleitner, I.; Guseva, N. There are no conformal Einstein rescalings of pseudo-Riemannian Einstein spaces with n complete light-like geodesics. Mathematics 2019, 7, 801. [Google Scholar] [CrossRef] [Green Version]
- Mikeš, J.; Škodová, M. Concircular vector fields on compact manifolds with affine connections. Publ. Real Soc. Mat. Esp. 2007, 11, 304–309. [Google Scholar]
- Chow, B.; Lu, P.; Ni, L. Hamilton’s Ricci Flow, Graduate Studies in Mathematics; AMS Scientific Press: New York, NY, USA, 2010; Volume 77. [Google Scholar]
- Deshmukh, S.; Chen, B. A note on Yamabe solitons. Balkan J. Geom. Appl. 2018, 23, 37–42. [Google Scholar]
- Yorozu, S. Killing vector fields on noncompact Riemannian manifolds with boundary. Kodai Math. J. 1982, 5, 426–433. [Google Scholar] [CrossRef]
- Yvonne, C.B.; Celicle, D. Analysis, Manifolds, Physics; Elsevier: Amsterdam, The Netherlands, 1977. [Google Scholar]
- Mosayebi, P.; Kobzas, D.; Murtha, A.; Jagersand, M. Tumor invasion margin on Riemannian space of brain fibers. Med. Image Anal. 2012, 16, 361–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berestovskii, V.; Nikonorov, Y. Killing Vector Fields of Constant Length on Riemannian Manifolds. Siberian Math. J. 2008, 49, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S. Conformal Vector Fields and Eigenvectors of Laplacian Operator. Math. Phys. Anal. Geom. 2012, 15, 163–172. [Google Scholar] [CrossRef]
- Deshmukh, S.; Al-Solamy, F. Conformal gradient vector fields on a compact Riemannian manifold. Colloq. Math. 2008, 112, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Deshmukh, S. Jacobi-type vector fields and Ricci soliton. Bull. Math. Soc. Sci. Math. Roum. 2012, 55, 41–50. [Google Scholar]
- Deshmukh, S.; Khan, V.A. Geodesic vector fields and Eikonal equation on a Riemannian manifold. Indag. Math. 2019, 30, 542–552. [Google Scholar] [CrossRef]
- Deshmukh, S.; Turki, N.B. A note on φ-analytic conformal vector fields. Anal. Math. Phys. 2019, 9, 181–195. [Google Scholar] [CrossRef]
- Deshmukh, S. Characterizing spheres and Euclidean spaces by conformal vector field. Ann. Mat. Pura. Appl. 2017, 196, 2135–2145. [Google Scholar] [CrossRef]
- Mikes, J.; Stepanova, E.; Vanzurova, E. Differential Geometry of Special Mappings; Palacký University: Olomouc, Czech Republic, 2015. [Google Scholar]
- Mikes, J. Equidistant Kaehler spaces. Math. Notes 1985, 38, 855–858. [Google Scholar] [CrossRef]
- Lynge, W.C. Sufficient conditions for periodicity of a Killing vector field. Proc. Am. Math. Soc. 1973, 38, 614–616. [Google Scholar] [CrossRef]
- Obata, M. Conformal transformations of Riemannian manifolds. J. Diff. Geom. 1970, 4, 311–333. [Google Scholar] [CrossRef]
- Obata, M. The conjectures about conformal transformations. J. Diff. Geom. 1971, 6, 247–258. [Google Scholar] [CrossRef]
- Xiaochun, R. Positive curvature, local and global symmetry, and fundamental groups. Am. J. Math. 1999, 121, 931–943. [Google Scholar]
- Yorozu, S. Killing vector fields on complete Riemannian manifolds. Proc. Am. Math. Soc. 1982, 84, 115–120. [Google Scholar] [CrossRef]
- Besse, A.L. Einstein Manifolds; Springer: Berlin, Germany, 1987. [Google Scholar]
- Pigola, S.; Rimoldi, M.; Setti, A.G. Remarks on non-compact gradient Ricci solitons. Math. Z. 2011, 268, 777–790. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deshmukh, S.; Peska, P.; Bin Turki, N. Geodesic Vector Fields on a Riemannian Manifold. Mathematics 2020, 8, 137. https://doi.org/10.3390/math8010137
Deshmukh S, Peska P, Bin Turki N. Geodesic Vector Fields on a Riemannian Manifold. Mathematics. 2020; 8(1):137. https://doi.org/10.3390/math8010137
Chicago/Turabian StyleDeshmukh, Sharief, Patrik Peska, and Nasser Bin Turki. 2020. "Geodesic Vector Fields on a Riemannian Manifold" Mathematics 8, no. 1: 137. https://doi.org/10.3390/math8010137
APA StyleDeshmukh, S., Peska, P., & Bin Turki, N. (2020). Geodesic Vector Fields on a Riemannian Manifold. Mathematics, 8(1), 137. https://doi.org/10.3390/math8010137