Argument and Coefficient Estimates for Certain Analytic Functions
Abstract
:1. Introduction and Preliminaries
2. Some Properties of the Class
3. Coefficient Bounds
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kayumov, I.R. On Brennan’s conjecture for a special class of functions. Math. Notes 2005, 78, 498–502. [Google Scholar] [CrossRef]
- Milin, I.M. Univalent Functions and Orthonormal Systems; Amer Mathematical Society, Translations of Mathematical Monographs: Proovidence, RI, USA, 1977; Volume 49. [Google Scholar]
- Milin, I.M. On a property of the logarithmic coefficients of univalent functions. In Metric Questions in the Theory of Functions; Naukova Dumka: Kiev, Ukraine, 1980; pp. 86–90. (In Russian) [Google Scholar]
- Milin, I.M. On a conjecture for the logarithmic coefficients of univalent functions. Zap. Nauch. Semin. Leningr. Otd. Mat. Inst. Steklova 1983, 125, 135–143. (In Russian) [Google Scholar] [CrossRef]
- Robertson, M.S. A remark on the odd-schlicht functions. Bull. Am. Math. Soc. 1936, 42, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Bieberbach, L. Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitkreises vermitteln. Sitz. Preuss. Akad. Wiss. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinant of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–112. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Vein, R.; Dale, P. Determinants and Their Applications in Mathematical Physics. In Applied Mathematical Sciences; Springer: New York, NY, USA, 1999; Volume 134. [Google Scholar]
- Fekete, M.; Szegö, G. Eine Bemerkung Über Ungerade Schlichte Funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. [Google Scholar] [CrossRef]
- Analouei Adegani, E.; Cho, N.E.; Motamednezhad, A.; Jafari, M. Bi-univalent functions associated with Wright hypergeometric functions. J. Comput. Anal. Appl. 2020, 28, 261–271. [Google Scholar]
- Cho, N.E.; Analouei Adegani, E.; Bulut, S.; Motamednezhad, A. The second Hankel determinant problem for a class of bi-close-to-convex functions. Mathematics 2019, 7, 986. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E.; Çağlar, M.; Orhan, H. Second Hankel determinant for bi-starlike and bi-convex functions of order β. Appl. Math. Comput. 2015, 271, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Analouei Adegani, E.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
- Motamednezhad, A.; Bulboacă, T.; Adegani, E.A.; Dibagar, N. Second Hankel determinant for a subclass of analytic bi-univalent functions defined by subordination. Turk. J. Math. 2018, 42, 2798–2808. [Google Scholar] [CrossRef]
- Nunokawa, M.; Saitoh, H. On certain starlike functions. Srikaisekikenkysho Kkyroku 1996, 963, 74–77. [Google Scholar]
- Ozaki, S. On the theory of multivalent functions, II. Sci. Rep. Tokyo Bunrika Daigaku. Sect. A 1941, 4, 45–87. [Google Scholar]
- Umezawa, T. Analytic functions convex in one direction. J. Math. Soc. Jpn. 1952, 4, 194–202. [Google Scholar] [CrossRef]
- Sakaguchi, K. A property of convex functions and an application to criteria for univalence. Bull. Nara Univ. Ed. Nat. Sci. 1973, 22, 1–5. [Google Scholar]
- Singh, R.; Singh, S. Some sufficient conditions for univalence and starlikeness. Colloq. Math. 1982, 47, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Obradović, M.; Ponnusamy, S.; Wirths, K.-J. Logarithmic coeffcients and a coefficient conjecture for univalent functions. Monatshefte Math. 2017. [Google Scholar] [CrossRef] [Green Version]
- Ponnusamy, S.; Sharma, N.L.; Wirths., K.-J. Logarithmic coefficients problems in families related to starlike and convex functions. J. Aust. Math. Soc. 2019, in press. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker Inc.: New York, NY, USA, 2000; ISBN 0-8247-0029-5. [Google Scholar]
- Nunokawa, M. On properties of non-Carathéodory functions. Proc. Jpn. Acad. Ser. A Math. Sci. 1992, 68, 152–153. [Google Scholar] [CrossRef]
- Nunokawa, M. On the order of strongly starlikeness of strongly convex functions. Proc. Jpn. Acad. Ser. A Math. Sci. 1993 69, 234–237. [CrossRef]
- Nehari, Z. Conformal Mapping; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α;β)-convex functions. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1984, 35, 125–143. [Google Scholar]
- Analouei Adegani, E.; Cho, N.E.; Jafari, M. Logarithmic coefficients for univalent functions defined by subordination. Mathematics 2019, 7, 408. [Google Scholar] [CrossRef] [Green Version]
- Obradović, M.; Ponnusamy, S.; Wirths, K.-J. Coefficient characterizations and sections for some univalent functions. Sib. Math. J. 2013, 54, 679–696. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alimohammadi, D.; Cho, N.E.; Adegani, E.A.; Motamednezhad, A. Argument and Coefficient Estimates for Certain Analytic Functions. Mathematics 2020, 8, 88. https://doi.org/10.3390/math8010088
Alimohammadi D, Cho NE, Adegani EA, Motamednezhad A. Argument and Coefficient Estimates for Certain Analytic Functions. Mathematics. 2020; 8(1):88. https://doi.org/10.3390/math8010088
Chicago/Turabian StyleAlimohammadi, Davood, Nak Eun Cho, Ebrahim Analouei Adegani, and Ahmad Motamednezhad. 2020. "Argument and Coefficient Estimates for Certain Analytic Functions" Mathematics 8, no. 1: 88. https://doi.org/10.3390/math8010088
APA StyleAlimohammadi, D., Cho, N. E., Adegani, E. A., & Motamednezhad, A. (2020). Argument and Coefficient Estimates for Certain Analytic Functions. Mathematics, 8(1), 88. https://doi.org/10.3390/math8010088