Next Article in Journal
Long-Range Correlations and Characterization of Financial and Volcanic Time Series
Next Article in Special Issue
A Family of Theta-Function Identities Based upon Combinatorial Partition Identities Related to Jacobi’s Triple-Product Identity
Previous Article in Journal
Single-Valued Neutrosophic Linguistic Logarithmic Weighted Distance Measures and Their Application to Supplier Selection of Fresh Aquatic Products
Previous Article in Special Issue
Argument and Coefficient Estimates for Certain Analytic Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain

1
Department of Mathematics and Statistics, International Islamic University Islamabad, Islamabad 44000, Pakistan
2
Department of Mathematics, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
3
Department of Mathematics, Riphah International University Islamabad, Islamabad 44000, Pakistan
4
Faculty of Science and Technology, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
5
Mathematics and Natural Science, Higher Colleges of Technology, Fujairah Men’s, Fujairah 4114, UAE
*
Authors to whom correspondence should be addressed.
Mathematics 2020, 8(3), 440; https://doi.org/10.3390/math8030440
Submission received: 19 January 2020 / Revised: 10 March 2020 / Accepted: 11 March 2020 / Published: 18 March 2020
(This article belongs to the Special Issue Mathematical Analysis and Analytic Number Theory 2019)

Abstract

:
Certain new classes of q-convex and q-close to convex functions that involve the q-Janowski type functions have been defined by using the concepts of quantum (or q-) calculus as well as q-conic domain Ω k , q [ λ , α ] . This study explores some important geometric properties such as coefficient estimates, sufficiency criteria and convolution properties of these classes. A distinction of new findings with those obtained in earlier investigations is also provided, where appropriate.

1. Introduction

The mathematical study of q-calculus, particularly q-fractional calculus and q-integral calculus, q-transform analysis has been a topic of great interest for researchers due to its wide applications in different fields (see [1,2]). Some of the earlier work on the applications of the q-calculus was introduced by Jackson [3,4]. Later, q-analysis with geometrical interpretation was turned into identified through quantum groups. Due to the applications of q-analysis in mathematics and other fields, numerous researchers [3,5,6,7,8,9,10,11,12,13,14] did some significant work on q-calculus and studied its several other applications. Recently, Srivastava [15] in his survey-cum-expository article, explored the mathematical application of q-calculus, fractional q- calculus and fractional q-differential operators in geometric function theory. Keeping in view the significance of q-operators instead of ordinary operators and due to the wide range of applications of q-calculus, many researchers comprehensively studied q-calculus such as Srivastava et al. [16], Muhammad and Darus [17], Kanas and Reducanu [18] and Muhammad and Sokol [19]. Motivated by [15,16,17,18,19,20,21], we consider subfamilies of q-convex functions and q-close to convex functions with respect to Janowski functions connected with q-conic domain.
Let A be the class of functions of the form
f ( z ) = z + n = 2 a n z n , a n C , z U ,
which are analytic in the open unit disk U = z : z C , z < 1 . Let A S , where S represents the set of all univalent functions in U. The classes of starlike ( S ) and convex ( C ) functions in U are the well known subclasses of S. Moreover, the class K of close to convex functions in U consists of normalized functions f A that satisfy the following conditions:
f A and R e z f ( z ) g ( z ) > 0 , where g ( z ) S .
Now, for κ 0 , the classes κ -uniformly convex mappings κ U C V and κ -starlike mappings κ U S T , explored by Kanas and Wiśniowska, see [22,23,24,25,26,27,28]. Kanas and Wiśniowska [22,23] also initiated the study of analytic functions on conic domain Ω κ , κ 0 as:
Ω κ = u + i v : u > κ u 1 2 + v 2 .
See [22,23] for geometric interpretation of Ω κ . These conic regions are images of the unit disk under the extremal functions h κ z given by:
h κ z = 1 + z 1 z κ = 0 , 1 + log z + 1 1 z 2 2 π 2 κ = 1 , 1 + sinh 2 arctan h z 2 π arccos κ 2 1 κ 2 0 < κ < 1 , 1 + 1 κ 2 1 sin π 2 R ( y ) 0 u ( z ) y d x 1 x 2 1 y 2 x 2 + 1 κ 2 1 κ > 1 ,
where
u ( z ) = z y 1 y z , z U .
Here, κ = cosh ( π R ( y ) / ( 4 R ( y ) ) ) ( 0 , 1 ) , where R ( y ) is Legendre’s complete elliptic integral of first kind and R ( y ) = R ( 1 y 2 ) is its complementary integral, see [22,23,29,30,31,32,33,34]. If h κ z = 1 + δ κ z + δ 1 κ z 2 + is taken from [23] for (2), then
δ κ = 8 arccos κ 2 π 2 1 κ 2 0 κ < 1 , 8 π 2 κ = 1 , π 2 4 y κ 2 1 R 2 y 1 + y κ > 1 ,
δ 1 κ = δ 2 κ δ κ ,
where
δ 2 κ = T 1 2 + 2 3 0 κ < 1 , 2 3 κ = 1 , 4 R 2 ( y ) y 2 + 6 y + 1 π 2 24 R 2 y 1 + y y κ > 1 ,
where T 1 = 2 π arccos κ , and y 0 , 1 .
Definition 1
([35]). Let p A and p ( 0 ) = 1 be in the class P λ , α if and only if
p z 1 + λ z 1 + α z , ( 1 α < λ 1 ) ,
where ≺ stands for subordination.
Janowski [35] initiated the class P λ , α by showing that p P λ , α if and only if there exists a mapping p P such that
p z ( λ + 1 ) λ 1 p z ( α + 1 ) α 1 1 + λ z 1 + α z ,
where P is class the of mappings with non-negative real parts.
Definition 2
([36]). Let function f A be in the class S λ , α if and only if
z f ( z ) f ( z ) = p z ( λ + 1 ) λ 1 p z ( α + 1 ) α 1 , 1 α < λ 1 .
Definition 3
([36]). Let function f A is in the class C λ , α if and only if
z f ( z ) f ( z ) = p z ( λ + 1 ) λ 1 p z ( α + 1 ) α 1 , 1 α < λ 1 .
Definition 4
([7]). Let function f A , n N 0 and q 0 , 1 , the q-difference o r q d e r i v a t i v e operator D q is defined as:
D q f ( z ) = f ( z ) f ( q z ) ( q 1 ) z .
Note that
D q z n = [ n ] q z n 1 , D q n = 1 a n z n = n = 1 [ n ] q a n z n 1 ,
where
[ n ] q = 1 q n 1 q .
Definition 5
([37]). Let function f A is in the class S q λ , α if and only if
z D q f ( z ) f ( z ) = ( λ + 1 ) p ˜ z λ 1 α + 1 p ˜ z α 1 , 1 α < λ 1 , q 0 , 1 .
By principle of subordination we can be written as follows:
z D q f ( z ) f ( z ) ( λ + 1 ) z + 2 + λ 1 q z α + 1 z + 2 + α 1 q z ,
where
p ˜ z = 1 + z 1 q z .
Definition 6
([37]). Let function f A is in class C q λ , α if and only if
D q z D q f ( z ) D q f ( z ) = p ˜ z ( λ + 1 ) λ 1 p ˜ z α + 1 α 1 , 1 α < λ 1 , q 0 , 1 .
Similarly, by principle of subordination, we can be written as follows:
D q z D q f ( z ) D q f ( z ) z ( λ + 1 ) + λ 1 q z + 2 z α + 1 + α 1 q z + 2 .
Mahmood et al. [38] introduced the class k P q λ , α as:
Definition 7
([38]). A function h k P q λ , α , if and only if
h z λ O 1 + O 3 h k z λ O 1 O 3 α O 1 + O 3 h k z α O 1 O 3 , k 0 , q 0 , 1 ,
where
O 1 = 1 + q a n d O 3 = 3 q .
In addition, h k ( z ) is defined in Label (2). Geometrically, the mapping h k P q λ , α takes all domain values Ω k , q λ , α , 1 α < λ 1 , k 0 , which is definable as:
Ω k , q ( λ , α ) = r = u + i v : Ψ > k Ψ 1 ,
where
Ψ = α O 1 O 3 r z λ O 1 O 3 α O 1 + O 3 r z λ O 1 + O 3 .
This domain describes the conic type domain; for details, see [38].
Note that
(i)
When q 1 , then domain Ω κ , q λ , α reduces to the domain Ω κ λ , α (see [39]).
(ii)
When q 1 , then the class κ P q λ , α reduces to the class κ P λ , α (see [39]).
(iii)
When q 1 , and κ = 0 , then κ P q λ , α = P ( λ , α ) also κ P ( 1 , 1 ) = P h κ (see [35]).
Definition 8
([38]). Let f A be in the class k ST q ( β , γ ) , if and only if
γ O 1 O 3 z D q f ( z ) f ( z ) β O 1 O 3 γ O 1 + O 3 z D q f ( z ) f ( z ) β O 1 + O 3 > k γ O 1 O 3 z D q f ( z ) f ( z ) β O 1 O 3 γ O 1 + O 3 z D q f ( z ) f ( z ) β O 1 + O 3 1 ,
or, equivalently,
z D q f ( z ) f ( z ) k P q ( β , γ ) ,
where k 0 , 1 γ < β 1 .
We can see that, when q 1 , then κ ST q ( β , γ ) diminishes to the renowned class which is stated in [39].
Motivated by the definition above, we introduced new classes κ U CV q ( β , γ ) , κ UK q ( λ , α , β , γ ) and κ UQ q ( λ , α , β , γ ) of analytic functions.
Definition 9.
Let f A , be in the class k U CV q ( β , γ ) if and only if
γ O 1 O 3 D q z D q f ( z ) D q f ( z ) β O 1 ( O 3 γ O 1 + O 3 D q z D q f ( z ) D q f ( z ) β O 1 + O 3 > k γ O 1 O 3 D q z D q f ( z ) D q f ( z ) β O 1 O 3 γ O 1 + O 3 D q z D q f ( z ) D q f ( z ) β O 1 + O 3 1 ,
or, equivalently,
D q z D q f ( z ) D q f ( z ) k P q ( β , γ ) ,
where k 0 , 1 γ < β 1 .
One can clearly see that
f κ UCV q ( β , γ ) z D q ( z ) κ ST q ( β , γ ) .
Note that, when q 1 , then the class κ U CV q ( β , γ ) reduces to a well-known class defined in [39].
Definition 10.
Let f A , be in the class k UK q ( λ , α , β , γ ) if and only if there exists g k ST q ( β , γ ) , such that
α O 1 O 3 z D q f ( z ) g ( z ) λ O 1 O 3 α O 1 + O 3 z D q f ( z ) g ( z ) λ O 1 + O 3 > k α O 1 O 3 z D q f ( z ) g ( z ) λ O 1 O 3 α O 1 + O 3 z D q f ( z ) g ( z ) λ O 1 + O 3 1 .
We can write equivalently
z D q f ( z ) g ( z ) k P q ( λ , α ) ,
where k 0 , 1 γ < β 1 , 1 α < λ 1 .
Note that, when q 1 , then, the class k UK q ( λ , α , β , γ ) reduces into the well-known class that is defined in (see [40]).
Definition 11.
Let f A , belong to the class k UQ q ( λ , α , β , γ ) if and only if there exist g k CV q ( β , γ ) , such that
α O 1 O 3 D q z D q f ( z ) D q g ( z ) λ O 1 O 3 α O 1 + O 3 D q z D q f ( z ) D q g ( z ) λ O 1 + O 3 > k α O 1 O 3 D q z D q f ( z ) D q g ( z ) λ O 1 O 3 α O 1 + O 3 D q z D q f ( z ) D q g ( z ) λ O 1 + O 3 1 ,
or, equivalently,
D q z D q f ( z ) D q g ( z ) k P q ( λ , α ) ,
where, for k 0 , 1 γ < β 1 , 1 α < λ 1 .
It is simple to verify this
f κ UQ q ( λ , α , β , γ ) z D q f κ UK q ( λ , α , β , γ ) .
A special case arises when q 1 , then the class κ UQ q ( λ , α , β , γ ) reduces to a well known class defined in [40].

2. Set of Lemmas

Lemma 1
([41]). Suppose 1 + n = 1 c n z n = d ( z ) H ( z ) = 1 + n = 1 C n z n . If H ( U ) is convex and H ( z ) A , then
c n C 1 , n 1 .
Lemma 2
([38]). Suppose d ( z ) = 1 + n = 1 c n z n k P q ( λ , α ) , then
c n δ k , λ , α = O 1 ( λ α ) 4 δ ( k ) ,
where δ k is given by (3).
Lemma 3
([38]). Suppose d k ST q ( β , γ ) , k 0 is given by
d ( z ) = z + n = 2 b n z n , z U ,
then
b n m = 0 n 2 δ ( k ) O 1 ( β γ ) 4 q m q γ 4 q m + 1 q ,
where δ ( k ) is given by (3).
Lemma 4
([42]). Suppose d S , f C and G S , then we have
f ( z ) d ( z ) G ( z ) f ( z ) d ( z ) c o ¯ ( G ( U ) ) , z U .
Here, “*” means convolution and c o ¯ ( G ( U ) means the closed convex hull G ( U ) .
Lemma 5
([38]). The function f A will belong to the class k ST q ( β , γ ) , if the following inequality holds:
n = 2 2 O 3 ( 1 + k ) q n 1 q + ( γ O 1 + O 3 ) n q ( β O 1 + ( O 3 ) a n O 1 γ β .
Throughout this paper, we assume that k 0 , 1 γ < β 1 , 1 α < λ 1 , and q 0 , 1 , unless otherwise specified.

3. Main Results

Theorem 1.
Let f A ; then, f is in the class k U CV q ( β , γ ) , if the following inequality holds:
n = 2 n q 2 O 3 ( k + 1 ) q n 1 q + ( γ O 1 + O 3 ) n q ( β O 1 + O 3 ) a n O 1 γ β .
Proof. 
By Lemma 5 and relation (5), the proof is straightforward. □
For q 1 , in Theorem 1, then we obtained following corollary, proved by Malik and Noor [39].
Corollary 1.
Let f A ; then, f belongs to k U CV ( β , γ ) , if the following inequality holds
n = 2 n 2 ( k + 1 ) n 1 + n γ + 1 β + 1 a n γ β .
Theorem 2.
Let f A , then f is in the class k UK q ( λ , α , β , γ ) , if the condition (7) holds
n = 2 2 O 3 ( k + 1 ) b n n q a n + ( α O 1 + O 3 ) n q a n ( λ O 1 + O 3 ) b n O 1 α λ .
Proof. 
Presuming that (7) holds, then it is enough to show that
k α O 1 O 3 z D q f ( z ) g ( z ) λ O 1 O 3 α O 1 + O 3 z D q f ( z ) g ( z ) λ O 1 + O 3 1 Re α O 1 O 3 z D q f ( z ) g ( z ) λ O 1 O 3 α O 1 + O 3 z D q f ( z ) g ( z ) λ O 1 + O 3 1 < 1 .
We have
k α O 1 O 3 z D q f ( z ) g ( z ) λ O 1 O 3 α O 1 + O 3 z D q f ( z ) g ( z ) λ O 1 + O 3 1 Re α O 1 O 3 z D q f ( z ) g ( z ) λ O 1 O 3 α O 1 + O 3 z D q f ( z ) g ( z ) λ O 1 + O 3 1 , ( k + 1 ) α O 1 O 3 z D q f ( z ) g ( z ) λ O 1 O 3 α O 1 + O 3 z D q f ( z ) g ( z ) λ O 1 + O 3 1 , = 2 O 3 ( k + 1 ) g ( z ) z D q f ( z ) α O 1 + O 3 z D q f ( z ) λ O 1 + O 3 g ( z ) , = 2 O 3 ( k + 1 ) n = 2 b n n q a n z n O 1 α λ z + n = 2 ( α O 1 + O 3 ) n q a n ( λ O 1 + O 3 ) b n z n , 2 O 3 ( k + 1 ) n = 2 b n n q a n O 1 α λ n = 2 ( α O 1 + O 3 ) n q a n ( λ O 1 + O 3 ) b n .
The expression (8) is bounded above by 1 if
n = 2 2 O 3 ( k + 1 ) b n n q a n + ( α O 1 + O 3 ) n q a n ( λ O 1 + O 3 ) b n ( O 1 ) α λ .
Corollary 2
([40]). Let f A . Then, f is in the class k UK q 1 ( λ , α , β , γ ) = k UK ( λ , α , β , γ ) , if the following condition holds:
n = 2 2 ( k + 1 ) b n n a n + ( α + 1 ) n a n ( λ + 1 ) b n α λ .
Here, q 1 represents the limiting value of q as it approaches 1.
Theorem 3.
Let f A . Then, f is in the class k UQ q ( λ , α , β , γ ) , if the following condition holds:
n = 2 n q 2 O 3 ( k + 1 ) b n n q a n + ( α O 1 + O 3 ) n q a n ( λ O 1 + O 3 ) b n O 1 α λ .
Proof. 
By Theorem 2 and relation (6), the proof is straightforward. □
Corollary 3
([40]). Let f A . Then, f is in the class k UK q 1 ( λ , α , β , γ ) = k UQ ( λ , α , β , γ ) , if
n = 2 n 2 ( k + 1 ) b n n a n + ( α + 1 ) n a n ( λ + 1 ) b n α λ .
Corollary 4
([43]). Let f A . Then, f is in the class 1 UK q 1 ( 1 2 τ , 1 , 1 , 1 ) = UK ( τ ) if
n = 2 n 2 a n 1 τ 2 .
Theorem 4.
Let f k U CV q ( β , γ ) , is of the form (1). Then,
a n 1 n q m = 0 n 2 δ ( k ) O 1 ( β γ ) 4 q m q γ 4 q m + 1 q ,
where δ ( k ) is given by (3).
Proof. 
By Lemma 3 and relation (5), the proof is straightforward. □
For q 1 , Theorem 4 brings to the following corollary, proved by Noor [39].
Corollary 5.
Let f k U CV ( β , γ ) . Then,
a n 1 n m = 0 n 2 δ ( k ) ( β γ ) 2 m γ 2 m + 1 ,
where δ ( k ) is given by (3).
Theorem 5.
If f k UK q ( λ , α , β , γ ) and g k ST q ( β , γ ) , then,
a n 1 n q m = 0 n 2 δ ( k ) O 1 ( β γ ) 4 q m q γ 4 q m + 1 q + δ ( k ) O 1 ( λ α ) 4 n q j = 1 n 1 m = 0 j 2 δ ( k ) O 1 ( β γ ) 4 q j q γ 4 q j + 1 q , n 2 ,
where δ ( k ) is given in (3).
Proof. 
Let us take
z D q f ( z ) g ( z ) = h ( z ) ,
where
h k P q ( λ , α ) and g k ST q ( β , γ ) .
Now, from (9), we have
z D q f ( z ) = g ( z ) h ( z ) ,
which implies that
z + n = 2 n q a n z n = 1 + n = 1 c n z n z + n = 2 b n z n .
By equating z n coefficients
n q a n = b n + j = 1 n 1 b j c n j , a = 1 , b 1 = 1 .
This implies that
n q a n b n + j = 1 n 1 b j c n j .
Since h k P q ( λ , α ) , therefore, by using Lemma 2 on (10), we have
n q a n b n + δ ( k ) O 1 ( λ α ) 4 j = 1 n 1 b j .
Again g k ST q ( β , γ ) , therefore, by using Lemma 3 on (11), we have
a n 1 n q m = 0 n 2 δ ( k ) O 1 ( β γ ) 4 q [ m ] q γ 4 q [ m + 1 ] q + δ ( k ) O 1 ( λ α ) 4 n q j = 1 n 1 m = 0 j 2 δ ( k ) O 1 ( β γ ) 4 q m q γ 4 q m + 1 q .
Corollary 6
([40]). If f k UK q 1 ( λ , α , β , γ ) = k UK ( λ , α , β , γ ) , then
a n 1 n m = 0 n 2 δ ( k ) ( β γ ) 2 m γ 2 ( m + 1 ) + δ ( k ) ( λ α ) 2 n j = 1 n 1 m = 0 j 2 δ ( k ) ( β γ ) 2 m γ 2 m + 1 , n 2 ,
where δ ( k ) is defined by (3).
Corollary 7
([26]). If f k UK q 1 ( 1 , 1 , 1 , 1 ) = k UK , then
a n δ ( k ) n 1 n ! + δ ( k ) n j = 0 n 1 δ ( k ) j 1 j 1 ! , n 2 .
Corollary 8
([44]). If f 0 UK q 1 ( 1 , 1 , 1 , 1 ) = K , then
a n n , n 2 .
Theorem 6.
If f k UQ q ( λ , α , β , γ ) , then
a n 1 n q 2 m = 0 n 2 δ ( k ) O 1 ( β γ ) 4 q m q γ 4 q m + 1 q + δ ( k ) O 1 ( λ α ) 4 n q 2 j = 1 n 1 m = 0 j 2 δ ( k ) O 1 ( β γ ) 4 q j q γ 4 q j + 1 q , n 2 ,
where δ ( k ) is defined by (3).
Proof. 
By Theorem 5 and relation (6), the proof is straightforward. □
Corollary 9
([40]). If f k UQ q 1 ( λ , α , β , γ ) = UQ ( λ , α , β , γ ) and is of the form (1), then
a n 1 n 2 m = 0 n 2 δ ( k ) ( β γ ) 2 m γ 2 ( m + 1 ) + δ ( k ) ( λ α ) 2 n 2 j = 1 n 1 m = 0 j 2 δ ( k ) ( β γ ) 2 m γ 2 m + 1 , n 2 .
Theorem 7.
If f k P q ( β , γ ) and χ C , then f χ k P q ( β , γ ) .
Proof. 
Here, we prove that
z D q χ ( z ) f ( z ) χ ( z ) f ( z ) k P q ( β , γ ) .
Consider
z D q χ ( z ) f ( z ) χ ( z ) f ( z ) = χ ( z ) f ( z ) z D q f ( z ) f ( z ) χ ( z ) f ( z ) , = χ ( z ) f ( z ) Ψ ( z ) χ ( z ) f ( z ) ,
where z D q f ( z ) f ( z ) = Ψ ( z ) P q ( β , γ ) . By using Lemma 4, we obtain the required result. □
Theorem 8.
If f k UK q ( λ , α , β , γ ) and χ C , then f χ k UK q ( λ , α , β , γ ) .
Proof. 
Since f k UK q ( λ , α , β , γ ) , there exist g k ST q ( β , γ ) , such that z D q f ( z ) g ( z ) k P q ( λ , α ) .
It follows from Lemma 4 that χ g k ST q ( β , γ ) .
Consider
z D q χ ( z ) f ( z ) χ ( z ) g ( z ) = χ ( z ) z D q f ( z ) χ ( z ) g ( z ) ,
= χ ( z ) z D q f ( z ) g ( z ) g ( z ) χ ( z ) f ( z ) , = χ ( z ) F ( z ) g ( z ) χ ( z ) g ( z ) ,
where F k ST q ( λ , α ) . By using Lemma 4, we obtain the required result. □

4. Conclusions

In this paper, we use Quantum Calculus to define new subclasses k CV q ( β , γ ) , k UK q ( λ , α , β , γ ) and k UQ q 1 ( λ , α , β , γ ) of analytic functions involving conic domain and associated with Janowski type function. We then investigate many geometric properties and characteristics of each of these families such as coefficient inequalities, sufficient condition, necessary condition, and convolution properties. For verification and validity of our main results, we have also pointed out relevant connections of our main results with those in several earlier related works on this subject.
For further investigation, we can make connections between the q-analysis and ( p , q ) -analysis, and the results for q-analogues which we have included in this article for 0 < q < 1 can be possibly be translated into the relevant findings for the ( p , q ) -analogues with ( 0 < q < p 1 ) by adding some parameter.

Author Contributions

Conceptualization, S.H.; Formal analysis, T.M. and M.D.; Funding acquisition, M.D.; Investigation, M.N., S.K. and Z.S. All authors have read and agreed to the published version of the manuscript.

Funding

M.D. is thankful to MOHE grant: FRGS/1/2019/STG06/UKM/01/1.

Acknowledgments

The authors would like to thank the referees for their valuable comments and suggestions, which was essential to improve the quality of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Gauchman, H. Integral inequalities in q-calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
  2. Tang, Y.; Zhang, T. A remark on the q-fractional order differential equations. Appl. Math. Comput. 2019, 350, 198–208. [Google Scholar] [CrossRef]
  3. Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
  4. Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
  5. Adams, C.R. On the linear partial q-difference equation of general type. Trans. Am. Math. Soc. 1929, 31, 360–371. [Google Scholar]
  6. Carmichael, R.D. The general theory of linear q-difference equations. Am. J. Math. 1912, 34, 147–168. [Google Scholar] [CrossRef]
  7. Jackson, F.H., XI. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
  8. Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H. Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 2019, 7, 1178. [Google Scholar] [CrossRef] [Green Version]
  9. Mahmood, S.; Raza, N.; AbuJarad, E.S.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric properties of certain classes of analytic functions associated with a q-integral operator. Symmetry 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
  10. Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.L.; Arif, M. A study of multivalent q-starlike functions connected with circular domain. Mathematics 2019, 7, 670. [Google Scholar] [CrossRef] [Green Version]
  11. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
  12. Srivastava, H.M.; Raza, N.; AbuJarad, E.S.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p,q)-Starlike and (p,q)-convex functions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A Matemáticas 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
  13. Yuan, Y.; Srivastava, R.; Liu, J.L. The order of strongly starlikeness of the generalized α-convex functions. Symmetry 2019, 11, 76. [Google Scholar] [CrossRef] [Green Version]
  14. Zhang, H.Y.; Srivastava, R.; Tang, H. Third-order Hankel and Toeplitz determinants for starlike functions connected with the sine function. Mathematics 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
  15. Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran J. Sci. Technol. Trans. Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
  16. Srivastava, R.; Zayed, H.M. Subclasses of analytic functions of complex order defined by g- derivative operator. Studia Universitatis Babes-Bolyai. Mathematica 2019, 64, 223–242. [Google Scholar]
  17. Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
  18. Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
  19. Mahmood, S.; Sokół, J. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Res. Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
  20. Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washington, DC, USA, 1983; Volume 1. [Google Scholar]
  21. Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washington, DC, USA, 1983; Volume 2. [Google Scholar]
  22. Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Maths. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
  23. Kanas, S.; Wisniowska, A. Conic domains and starlike functions. Revue Roumaine de Mathématiques Pures et Appliquées 2000, 45, 647–658. [Google Scholar]
  24. Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integr. Transforms Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
  25. Kanas, S. Techniques of the differential subordination for domains bounded by conic sections. Int. J. Math. Math. Sci. 2003, 2003, 2389–2400. [Google Scholar] [CrossRef] [Green Version]
  26. Noor, K.I.; Arif, M.; Ul-Haq, W. On k-uniformly close-to-convex functions of complex order. Appl. Math. Comput. 2009, 215, 629–635. [Google Scholar] [CrossRef]
  27. Noor, K.I. Applications of certain operators to the classes related with generalized Janowski functions. Integr. Transforms Spec. Funct. 2010, 21, 557–567. [Google Scholar] [CrossRef]
  28. Thomas, D.K. Starlike and close-to-convex functions. J. Lond. Math. Soc. 1967, 42, 427–435. [Google Scholar] [CrossRef]
  29. Akhiezer, N.I. Elements of the Theory of Elliptic Functions; American Mathematical Society: Providence, RI, USA, 1970; Volume 79. [Google Scholar]
  30. Fan, L.L.; Wang, Z.G.; Khan, S.; Hussain, S.; Naeem, M.; Mahmood, T. Coefficient bounds for certain subclasses of q-starlike functions. Mathematics 2019, 7, 969. [Google Scholar] [CrossRef] [Green Version]
  31. Khan, S.; Hussain, S.; Zaighum, M.A.; Khan, M.M. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Int. J. Anal. Appl. 2018, 16, 239–253. [Google Scholar]
  32. Naeem, M.; Hussain, S.; Mahmood, T.; Khan, S.; Darus, M. A new subclass of analytic functions defined by using Salagean q-differential operator. Mathematics 2019, 7, 458. [Google Scholar] [CrossRef] [Green Version]
  33. Sakar, F.M.; Aydogan, S.M. Subclass of m-quasiconformal harmonic functions in association with Janowski starlike functions. Appl. Math. Comput. 2018, 319, 461–468. [Google Scholar] [CrossRef]
  34. Ul-Haq, W.; Mahmood, S. Certain properties of a class of close-to-convex functions related to conic domains. Abstr. Appl. Anal. 2013, 2013, 847287. [Google Scholar] [CrossRef]
  35. Janowski, W. Some extremal problems for certain families of analytic function I. In Annales Polonici Mathematici; Institute of Mathematics Polish Academy of Sciences: Warsaw, Poland, 1973; Volume 28, pp. 297–326. [Google Scholar]
  36. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
  37. Srivastava, H.M.; Bilal, K.; Nazar, K.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
  38. Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Sp. 2018, 2018, 8492072. [Google Scholar] [CrossRef] [Green Version]
  39. Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
  40. Mahmood, S.; Arif, M.; Malik, S.N. Janowski type close-to-convex functions associated with conic regions. J. Inequal. Appl. 2017, 2017, 259. [Google Scholar] [CrossRef] [Green Version]
  41. Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48–82. [Google Scholar] [CrossRef]
  42. Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
  43. Subramanian, K.G.; Sudharsan, T.V.; Silverman, H. On uniformly close-to-convex functions and uniformly quasiconvex functions. Int. J. Math. Math. Sci. 2003, 2003, 3053–3058. [Google Scholar] [CrossRef] [Green Version]
  44. Kaplan, W. Close-to-convex schlicht functions. Mich. Math. J. 1952, 1, 169–185. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Naeem, M.; Hussain, S.; Khan, S.; Mahmood, T.; Darus, M.; Shareef, Z. Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain. Mathematics 2020, 8, 440. https://doi.org/10.3390/math8030440

AMA Style

Naeem M, Hussain S, Khan S, Mahmood T, Darus M, Shareef Z. Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain. Mathematics. 2020; 8(3):440. https://doi.org/10.3390/math8030440

Chicago/Turabian Style

Naeem, Muhammad, Saqib Hussain, Shahid Khan, Tahir Mahmood, Maslina Darus, and Zahid Shareef. 2020. "Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain" Mathematics 8, no. 3: 440. https://doi.org/10.3390/math8030440

APA Style

Naeem, M., Hussain, S., Khan, S., Mahmood, T., Darus, M., & Shareef, Z. (2020). Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain. Mathematics, 8(3), 440. https://doi.org/10.3390/math8030440

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop