Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain
Abstract
:1. Introduction
2. Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gauchman, H. Integral inequalities in q-calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Zhang, T. A remark on the q-fractional order differential equations. Appl. Math. Comput. 2019, 350, 198–208. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Jackson, F.H. q-difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Adams, C.R. On the linear partial q-difference equation of general type. Trans. Am. Math. Soc. 1929, 31, 360–371. [Google Scholar]
- Carmichael, R.D. The general theory of linear q-difference equations. Am. J. Math. 1912, 34, 147–168. [Google Scholar] [CrossRef]
- Jackson, F.H., XI. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H. Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 2019, 7, 1178. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Raza, N.; AbuJarad, E.S.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric properties of certain classes of analytic functions associated with a q-integral operator. Symmetry 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.L.; Arif, M. A study of multivalent q-starlike functions connected with circular domain. Mathematics 2019, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Raza, N.; AbuJarad, E.S.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p,q)-Starlike and (p,q)-convex functions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A Matemáticas 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Yuan, Y.; Srivastava, R.; Liu, J.L. The order of strongly starlikeness of the generalized α-convex functions. Symmetry 2019, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.Y.; Srivastava, R.; Tang, H. Third-order Hankel and Toeplitz determinants for starlike functions connected with the sine function. Mathematics 2019, 7, 404. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran J. Sci. Technol. Trans. Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, R.; Zayed, H.M. Subclasses of analytic functions of complex order defined by g- derivative operator. Studia Universitatis Babes-Bolyai. Mathematica 2019, 64, 223–242. [Google Scholar]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokół, J. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Res. Math. 2017, 71, 1345–1357. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washington, DC, USA, 1983; Volume 1. [Google Scholar]
- Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washington, DC, USA, 1983; Volume 2. [Google Scholar]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Maths. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Wisniowska, A. Conic domains and starlike functions. Revue Roumaine de Mathématiques Pures et Appliquées 2000, 45, 647–658. [Google Scholar]
- Kanas, S.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integr. Transforms Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Kanas, S. Techniques of the differential subordination for domains bounded by conic sections. Int. J. Math. Math. Sci. 2003, 2003, 2389–2400. [Google Scholar] [CrossRef] [Green Version]
- Noor, K.I.; Arif, M.; Ul-Haq, W. On k-uniformly close-to-convex functions of complex order. Appl. Math. Comput. 2009, 215, 629–635. [Google Scholar] [CrossRef]
- Noor, K.I. Applications of certain operators to the classes related with generalized Janowski functions. Integr. Transforms Spec. Funct. 2010, 21, 557–567. [Google Scholar] [CrossRef]
- Thomas, D.K. Starlike and close-to-convex functions. J. Lond. Math. Soc. 1967, 42, 427–435. [Google Scholar] [CrossRef]
- Akhiezer, N.I. Elements of the Theory of Elliptic Functions; American Mathematical Society: Providence, RI, USA, 1970; Volume 79. [Google Scholar]
- Fan, L.L.; Wang, Z.G.; Khan, S.; Hussain, S.; Naeem, M.; Mahmood, T. Coefficient bounds for certain subclasses of q-starlike functions. Mathematics 2019, 7, 969. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Hussain, S.; Zaighum, M.A.; Khan, M.M. New subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator. Int. J. Anal. Appl. 2018, 16, 239–253. [Google Scholar]
- Naeem, M.; Hussain, S.; Mahmood, T.; Khan, S.; Darus, M. A new subclass of analytic functions defined by using Salagean q-differential operator. Mathematics 2019, 7, 458. [Google Scholar] [CrossRef] [Green Version]
- Sakar, F.M.; Aydogan, S.M. Subclass of m-quasiconformal harmonic functions in association with Janowski starlike functions. Appl. Math. Comput. 2018, 319, 461–468. [Google Scholar] [CrossRef]
- Ul-Haq, W.; Mahmood, S. Certain properties of a class of close-to-convex functions related to conic domains. Abstr. Appl. Anal. 2013, 2013, 847287. [Google Scholar] [CrossRef]
- Janowski, W. Some extremal problems for certain families of analytic function I. In Annales Polonici Mathematici; Institute of Mathematics Polish Academy of Sciences: Warsaw, Poland, 1973; Volume 28, pp. 297–326. [Google Scholar]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Bilal, K.; Nazar, K.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Sp. 2018, 2018, 8492072. [Google Scholar] [CrossRef] [Green Version]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, S.; Arif, M.; Malik, S.N. Janowski type close-to-convex functions associated with conic regions. J. Inequal. Appl. 2017, 2017, 259. [Google Scholar] [CrossRef] [Green Version]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1943, 48, 48–82. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Subramanian, K.G.; Sudharsan, T.V.; Silverman, H. On uniformly close-to-convex functions and uniformly quasiconvex functions. Int. J. Math. Math. Sci. 2003, 2003, 3053–3058. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, W. Close-to-convex schlicht functions. Mich. Math. J. 1952, 1, 169–185. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naeem, M.; Hussain, S.; Khan, S.; Mahmood, T.; Darus, M.; Shareef, Z. Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain. Mathematics 2020, 8, 440. https://doi.org/10.3390/math8030440
Naeem M, Hussain S, Khan S, Mahmood T, Darus M, Shareef Z. Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain. Mathematics. 2020; 8(3):440. https://doi.org/10.3390/math8030440
Chicago/Turabian StyleNaeem, Muhammad, Saqib Hussain, Shahid Khan, Tahir Mahmood, Maslina Darus, and Zahid Shareef. 2020. "Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain" Mathematics 8, no. 3: 440. https://doi.org/10.3390/math8030440
APA StyleNaeem, M., Hussain, S., Khan, S., Mahmood, T., Darus, M., & Shareef, Z. (2020). Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain. Mathematics, 8(3), 440. https://doi.org/10.3390/math8030440