Two Nested Limit Cycles in Two-Species Reactions
Abstract
:1. Introduction
2. A Method to Find Limit Cycles
- As a first step, the singular point of the system is shifted into the origin using the substitution so in the new coordinates the system is written asLet us denote the Jacobian matrix of this system at the origin by J and let and be the eigenvalues. Next, the parameters are chosen in such a way that
- Then we look for a polynomial such that
- Keeping and positive definite we look for values of parameters of system (1) to set the values of and in the following way.
- (a)
- First, if and then, since is a positive definite Lyapunov function, the origin is a stable focus.
- (b)
- If we now take a small perturbation, so that becomes positive (while remains negative), then an unstable focus arises at the origin and a stable limit cycle appears around the singular point.
- Finally, the parameters are perturbed in such a way that and . In this case, the origin becomes stable, and if the perturbation is sufficiently small, then the outer stable limit cycle is preserved (but can be shifted) and an unstable limit cycle appears between the origin and the outer stable limit cycle as a result of a supercritical Hopf bifurcation. Since we cannot say in advance what perturbations are “sufficiently small”, the existence of two limit cycles in a specific perturbed system should be also verified numerically.Similarly, if in step 3a we look for parameters such that and at the beginning and achieve that , , in the end, then the outer limit cycle will be unstable and the inner one will be stable.
3. Model 1
3.1. Symbolic Preparations
3.2. Numerical Results for Model 1
3.2.1. The Appearance of the First Limit Cycle
3.2.2. The Appearance of the Second Limit Cycle
4. Model 2
5. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Antonov, V.; Doličanin, D.; Romanovski, V.G.; Tóth, J. Invariant planes and periodic oscillations in the May–Leonard asymmetric model. MATCH Commun. Math. Comput. Chem. 2016, 76, 455–474. [Google Scholar]
- Arcet, B.; Dolićanin, D.; Ðekić, D.D.; Maćešić, S.; Romanovski, V.G. Limit cycles in the model of hypothalamic-pituitary-adrenal axis activity. MATCH Commun. Math. Comput. Chem. 2020, 83, 331–343. [Google Scholar]
- Ferčec, B.; Nagy, I.; Romanovski, V.G.; Szederkényi, G.; Tóth, J. Limit Cycles in a Two-Species Reaction. J. Nonlinear Model. Anal. 2019, 1, 283–300. [Google Scholar]
- Li, Y.; Romanovski, V.G. Hopf Bifurcations in a Predator–Prey Model with an Omnivore. Qual. Theory Dyn. Syst. 2019, 18, 1201–1224. [Google Scholar] [CrossRef]
- Pantea, C.; Romanovski, V.G. Qualitative studies of some biochemical models. Vestn. St. Petersb. Univ. Math. 2020, 53, 214–222. [Google Scholar] [CrossRef]
- Valenzuela, L.M.; Blé, G.; Falconi, M.; Guerrero, D. Hopf and Bautin bifurcations in a generalized Lengyel—Epstein system. J. Math. Chem. 2020, 58, 497–515. [Google Scholar] [CrossRef]
- Drexler, D.A.; Nagy, I.; Romanovski, V.; Tóth, J.; Kovács, L. Qualitative analysis of a closed-loop model of tumor growth control. In Proceedings of the 2018 IEEE 18th International Symposium on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, 21–22 November 2018; pp. 000329–000334. [Google Scholar]
- Dukarić, M.; Errami, H.; Jerala, R.; Lebar, T.; Romanovski, V.G.; Tóth, J.; Weber, A. On three genetic repressilator topologies. React. Kinet. Mech. Catal. 2019, 126, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, P.H. Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 1838, 10, 113–121. [Google Scholar]
- Lotka, A.J. Contribution to the Theory of Periodic Reaction. J. Phys. Chem. 1910, 14, 271–274. [Google Scholar] [CrossRef] [Green Version]
- Lotka, A.J. Analytical Note on Certain Rhythmic Relations in Organic Systems. Proc. Natl. Acad. Sci. USA 1920, 6, 410–415. [Google Scholar] [CrossRef] [Green Version]
- Volterra, V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. Acad. Lincei Roma 1926, 2, 31–113. [Google Scholar]
- Frank-Kamenetskii, D.A. Periodicheskie processy v kinetike okislitelnykh reaktsii (The periodical processes in the kinetics of oxidation reaction). Dokl. SSSR 1939, 25, 67–69. [Google Scholar]
- Frank-Kamenetskii, D.A. Diffusion and Heat Transfer in Chemical Kinetics; USSR Academy of Science Press: Moscow-Leningrad, Russia, 1947. (In Russian) [Google Scholar]
- Prigogine, I.; Lefever, R. Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 1968, 48, 1695–1700. [Google Scholar] [CrossRef]
- Frank-Kamenetsky, D.A.; Salnikov, I.E. On the possibility of auto-oscillation in homogeneous chemical systems with quadratic autocatalysis. J. Phys. Chem. 1943, 17, 79–86. (In Russian) [Google Scholar]
- Edelson, D.; Noyes, R.M.; Field, R.J. Mechanistic details of the Belousov–Zhabotinsky oscillations. II. The organic reaction subset. Int. J. Chem. Kinet. 1979, 11, 155–164. [Google Scholar] [CrossRef]
- Zhabotinsky, A.M. Periodic oxidizing reactions in the liquid phase. Dokl. Akad. Nauk 1964, 157, 392–395. (In Russian) [Google Scholar]
- Hsü, I.D. Existence of periodic solutions for the Belousov-Zaikin-Zhabotinskiĭ reaction by a theorem of Hopf. J. Differ. Equ. 1976, 20, 399–403. [Google Scholar] [CrossRef] [Green Version]
- Póta, G. Two-component bimolecular systems cannot have limit cycles: A complete proof. J. Chem. Phys. 1983, 78, 1621–1622. [Google Scholar] [CrossRef]
- Schuman, B.; Tóth, J. No limit cycle in two species second order kinetics. Bull. Sci. Math. 2003, 127, 222–230. [Google Scholar] [CrossRef]
- Schnakenberg, J. Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 1979, 81, 389–400. [Google Scholar] [CrossRef]
- Császár, A.; Jicsinszky, L.; Turányi, T. Generation of model reactions leading to limit cycle behavior. React. Kinet. Catal. Lett. 1982, 18, 65–71. [Google Scholar] [CrossRef]
- Tóth, J.; Nagy, A.L.; Papp, D. Reaction Kinetics: Exercises, Programs and Theorems; Springer Nature: Berlin/Heidelberg, Germany; New York, NY, USA, 2018. [Google Scholar]
- Feinberg, M. Foundations of Chemical Reaction Network Theory; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Craciun, G.; Szederkényi, G.; Johnston, M.D.; Tonello, E.; Tóth, J.; Yu, P. Realizations of kinetic differential equations. Math. Biosci. Eng. 2020, 17, 862–892. [Google Scholar] [CrossRef] [PubMed]
- Escher, C. Models of Chemical Reaction Systems with Exactly Evaluable Limit Cycle Oscillations and their Bifurcation Behaviour. Berichte Bunsenges. Phys. Chem. 1980, 84, 387–391. [Google Scholar] [CrossRef]
- Escher, C. Bifurcation and coexistence of several limit cycles in models of open two-variable quadratic mass-action systems. Chem. Phys. 1981, 63, 337–348. [Google Scholar] [CrossRef]
- Nagy, I. Calculations for Two Nested Limit Cycles in Two-Species Reactions with Wolfram Mathematica. Available online: http://math.bme.hu/~nagyi/Mathematica_notebooks/index.html (accessed on 24 August 2020).
- Dumortier, F.; Llibre, J.; Artés, J.C. Qualitative Theory of Planar Differential Systems; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- WRI. Mathematica 11.3. Available online: http://www.wolfram.com (accessed on 8 March 2018).
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, I.; Romanovski, V.G.; Tóth, J. Two Nested Limit Cycles in Two-Species Reactions. Mathematics 2020, 8, 1658. https://doi.org/10.3390/math8101658
Nagy I, Romanovski VG, Tóth J. Two Nested Limit Cycles in Two-Species Reactions. Mathematics. 2020; 8(10):1658. https://doi.org/10.3390/math8101658
Chicago/Turabian StyleNagy, Ilona, Valery G. Romanovski, and János Tóth. 2020. "Two Nested Limit Cycles in Two-Species Reactions" Mathematics 8, no. 10: 1658. https://doi.org/10.3390/math8101658
APA StyleNagy, I., Romanovski, V. G., & Tóth, J. (2020). Two Nested Limit Cycles in Two-Species Reactions. Mathematics, 8(10), 1658. https://doi.org/10.3390/math8101658