Finite Difference Method for the Hull–White Partial Differential Equations
Abstract
:1. Introduction
2. Models and Partial Differential Equations
2.1. Review of Interest Rate Models
2.2. HW PDE for a Single Interest Rate
2.3. HW Model and PDE for Two Interest Rates
3. Finite Difference Method
4. Numerical Experiments
4.1. Single-Asset Options
4.2. Multi-Asset Options
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duffy, D.J. Finite Difference Methods in Financial Engineering: A Partial Differential Equation Approach; John Wiley & Sons: Chichester, UK, 2013. [Google Scholar]
- Kim, S.; Jeong, D.; Lee, C.; Kim, J. Finite Difference Method for the Multi-Asset Black-Scholes Equations. Mathematics 2020, 8, 391. [Google Scholar] [CrossRef] [Green Version]
- Bank for International Settlements. BIS Statistics: Charts, BIS Quarterly Review. Available online: https://www.bis.org/publ/qtrpdf/r_qt2006.pdf (accessed on 28 August 2020).
- Hull, J.; White, A. Pricing Interest Rate Derivative Securities. Rev. Financ. Stud. 1990, 3, 573–592. [Google Scholar] [CrossRef]
- Hull, J.; White, A. Valuing Derivative Securities Using the Explicit Finite Difference Method. J. Financ. Quant. Anal. 1990, 25, 87–100. [Google Scholar] [CrossRef]
- Vetzal, K.R. An Improved Finite Difference Approach to Fitting the Initial Term Structure. J. Fixed Income 1998, 7, 62–81. [Google Scholar] [CrossRef]
- Falcó, A.; Navarro, L.; Vázquez, C. A Direct LU Solver for Pricing American Bond Options under Hull-White Model. J. Comput. Appl. Math. 2017, 309, 442–455. [Google Scholar] [CrossRef]
- Dang, D.M.; Christara, C.C.; Jackson, K.R.; Lakhany, A. A PDE Pricing Framework for Cross-currency Interest Rate Derivatives. Procedia Comput. Sci. 2010, 1, 2371–2380. [Google Scholar] [CrossRef] [Green Version]
- Turfus, C. Closed-form Arrow-Debreu Pricing for the Hull-White Short Rate Model. Quant. Financ. 2019, 19, 2087–2094. [Google Scholar] [CrossRef]
- Brigo, D.; Mercurio, F. Interest Rate Models—Theory and Practice: With Smile, Inflation and Credit, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Black, F.; Karasinski, P. Bond and Option Pricing when Short Rates are Lognormal. Financ. Anal. J. 1991, 47, 52–59. [Google Scholar] [CrossRef]
- Cox, J.C.; Ingersoll, J.E.; Ross, S.A. A Theory of the Term Structure of Interest Rates. Econometrica 1985, 53, 385–407. [Google Scholar] [CrossRef]
- Vasicek, O. An Equilibrium Characterization of the Term Structure. J. Financ. Econ. 1977, 5, 177–188. [Google Scholar] [CrossRef]
- Wong, H.Y.; Zhao, J. An Artificial Boundary Method for the Hull–White Model of American Interest Rate Derivatives. Appl. Math. Comput. 2011, 217, 4627–4643. [Google Scholar] [CrossRef]
- Hull, J.; White, A. Numerical Procedures for Implementing Term Structure Models II. J. Deriv. 1994, 2, 37–48. [Google Scholar] [CrossRef]
- Heath, D.; Jarrow, R.; Andrew, M. Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation. Econometrica 1992, 60, 77–105. [Google Scholar] [CrossRef]
- Mercurio, F.; Moraleda, J.M. An Analytically Tractable Interest Rate Model with Humped Volatility. Eur. J. Oper. Res. 2000, 120, 205–214. [Google Scholar] [CrossRef]
- Ritchken, P.; Sankarasubramanian, L. Volatility Structure of Forward Rates and the Dynamics of the Term Structure. Math. Financ. 1995, 5, 55–72. [Google Scholar] [CrossRef]
- Carverhill, A. When Is the Short Rate Markovian? Math. Financ. 1994, 4, 305–312. [Google Scholar] [CrossRef]
- Brace, A.; Gatarek, D.; Musiela, M. The Market Model of Interest Rate Dynamics. Math. Financ. 1997, 7, 127–155. [Google Scholar] [CrossRef] [Green Version]
- Jamshidian, F. LIBOR and Swap Market Models and Measures. Financ. Stoch. 1997, 1, 293–330. [Google Scholar] [CrossRef] [Green Version]
- Miltersen, K.R.; Sandmann, K.; Sondermann, D. Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates. J. Financ. 1997, 52, 409–430. [Google Scholar] [CrossRef]
- Hull, J.; White, A. Using Hull-White Interest Rate Trees. J. Deriv. 1996, 3, 26–36. [Google Scholar] [CrossRef]
- Hull, J.; White, A. Hull-White on Derivatives: A Compilation of Articles; Risk Books: London, UK, 1996. [Google Scholar]
- Hull, J.; White, A. Numerical Procedures for Implementing Term Structure Models I. J. Deriv. 1994, 2, 7–16. [Google Scholar] [CrossRef]
- Hull, J.; White, A. One-Factor Interest Rate Models and the Valuation of Interest Rate Derivative Securities. J. Financ. Quant. Anal. 1993, 28, 235–254. [Google Scholar] [CrossRef]
- Chang, C.C.; Chung, S.L.; Yu, M.T. Valuation and Hedging of Differential Swaps. J. Futur. Mark. 2002, 22, 73–94. [Google Scholar] [CrossRef]
- Henrard, M. Interest Rate Modelling in the Multi-Curve Framework: Foundations, Evolution and Implementation; Palgrave Macmillan: London, UK, 2014. [Google Scholar]
- Piterbarg, V. Smiling Hybrids. Risk Mag. 2006, 19, 66–71. [Google Scholar]
- Jeong, D.; Kim, J. A comparison study of ADI and operator splitting methods on option pricing models. J. Comput. Appl. Math. 2013, 247, 162–171. [Google Scholar] [CrossRef]
- Hout, K.; Toivanen, J. Application of Operator Splitting Methods in Finance in Splitting Methods in Communication, Imaging, Science, and Engineering; Scientific Computation; Springer: Cham, Switzerland, 2016. [Google Scholar]
Condition | Detail |
---|---|
Nominal amount | KRW 100,000,000 |
Maturity | 15 years |
Payment currency | KRW |
Interest 1 | , Annually |
n = number of calendar days satisfying the following conditions: | |
0 < KRW 91-day CD rate < 5% and 0 < USD 3-month LIBOR < 5% | |
Interest 2 | KRW 91-day CD rate + 0.05%, Quarterly |
Cancellable option | The interest 1 payer has the right to cancel the contract every year from trade. |
Time | Curve 1 (Domestic) | Curve 2 (Foreign) | |||
---|---|---|---|---|---|
Maturity | Days | Rate (%) | Rate (%) | ||
1 day | 1 | 3.03987 | 0.999917 | 0.12826 | 0.999996 |
3 months | 93 | 3.44064 | 0.991272 | 0.25260 | 0.999357 |
6 months | 184 | 3.50462 | 0.982488 | 0.40222 | 0.997974 |
9 months | 275 | 3.54022 | 0.973680 | 0.32367 | 0.997564 |
1 year | 369 | 3.58056 | 0.964449 | 0.36307 | 0.996336 |
2 years | 733 | 3.66949 | 0.928958 | 0.60594 | 0.987905 |
3 years | 1097 | 3.75130 | 0.893379 | 0.99992 | 0.970395 |
4 years | 1462 | 3.80810 | 0.858531 | 1.43411 | 0.944176 |
5 years | 1828 | 3.86056 | 0.824197 | 1.85815 | 0.911139 |
7 years | 2560 | 3.95699 | 0.757652 | 2.56285 | 0.835479 |
10 years | 3654 | 4.07967 | 0.664704 | 3.24935 | 0.722317 |
T (Year) | S (Year) | K | Numerical Solution | RMSE |
---|---|---|---|---|
1 | 3 | 0.893186925 | 0.031802834 | 0.0000088634 |
2 | 4 | 0.858436372 | 0.060984307 | 0.0000128773 |
3 | 5 | 0.824290518 | 0.087883163 | 0.0000145132 |
4 | 6 | 0.790788386 | 0.111866668 | 0.0000142805 |
5 | 7 | 0.757829933 | 0.133221129 | 0.0000121528 |
7 | 9 | 0.694856537 | 0.168386157 | 0.0000003208 |
T (Year) | (Year) | (Year) | Numerical Solution | RMSE | ||
---|---|---|---|---|---|---|
1 | 3 | 3 | 0.893186925 | 0.970272123 | 0.547677056 | 0.000388024 |
2 | 4 | 4 | 0.858436372 | 0.944094608 | 0.600037268 | 0.000459376 |
3 | 5 | 5 | 0.824290518 | 0.911237792 | 0.702678318 | 0.000500082 |
4 | 6 | 6 | 0.790788386 | 0.875784156 | 0.776749239 | 0.000517691 |
5 | 7 | 7 | 0.757829933 | 0.835708511 | 0.801148847 | 0.000474142 |
7 | 9 | 9 | 0.694856537 | 0.761627292 | 0.757202620 | 0.000321140 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Yang, K. Finite Difference Method for the Hull–White Partial Differential Equations. Mathematics 2020, 8, 1719. https://doi.org/10.3390/math8101719
Lee Y, Yang K. Finite Difference Method for the Hull–White Partial Differential Equations. Mathematics. 2020; 8(10):1719. https://doi.org/10.3390/math8101719
Chicago/Turabian StyleLee, Yongwoong, and Kisung Yang. 2020. "Finite Difference Method for the Hull–White Partial Differential Equations" Mathematics 8, no. 10: 1719. https://doi.org/10.3390/math8101719
APA StyleLee, Y., & Yang, K. (2020). Finite Difference Method for the Hull–White Partial Differential Equations. Mathematics, 8(10), 1719. https://doi.org/10.3390/math8101719