On the Sharp Gårding Inequality for Operators with Polynomially Bounded and Gevrey Regular Symbols
Abstract
:1. Introduction
- (i)
- if is real;
- (ii)
- if ; and
- (iii)
- if .
2. Pseudodifferential Operators
3. Oscillatory Integrals and Operators with Double Symbols
3.1. Amplitudes and Oscillatory Integrals
- (i)
- ;
- (ii)
- ; and
- (iii)
- .
3.2. Operators with Double Symbols
4. The Friedrichs Part
- (i)
- If is real, then
- (ii)
- If , then
- (iii)
- If is purely imaginary, then
- (iv)
- If , then
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hörmander, L. Pseudo-differential operators and non-elliptic noundary problems. Ann. Math. 1966, 83, 129–209. [Google Scholar] [CrossRef]
- Lax, P.D.; Nirenberg, L. On stability for difference scheme: A sharp form of Gårding inequality. Commun. Pure Appl. Math. 1966, 19, 473–492. [Google Scholar] [CrossRef]
- Friedrichs, K.O. Pseudo-Differential Operators; Lecture Note; Courant Inst. Math. Sci. New York Univ.: New York, NY, USA, 1968. [Google Scholar]
- Hörmander, L. The Analysis of Linear Partial Differential Operators III; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Kumano-Go, H. Pseudo-Differential Operators; The MIT Press: Cambridge, UK; London, UK, 1982. [Google Scholar]
- Nagase, M. A new proof of sharp Gårding inequality. Funkc. Ekvacioj 1977, 20, 259–271. [Google Scholar]
- Cicognani, M.; Colombini, F. The Cauchy problem for p-evolution equations. Trans. Am. Math. Soc. 2010, 362, 4853–4869. [Google Scholar] [CrossRef] [Green Version]
- Cicognani, M.; Reissig, M. Well-posedness for degenerate Schrödinger equations. Evol. Equ. Control Theory 2014, 3, 15–33. [Google Scholar] [CrossRef]
- Ascanelli, A.; Boiti, C.; Zanghirati, L. Well-posedness of the Cauchy problem for p-evolution equations. J. Differ. Equ. 2012, 253, 2765–2795. [Google Scholar] [CrossRef] [Green Version]
- Ascanelli, A.; Cappiello, M. Weighted energy estimates for p-evolution equations in SGclasses. J. Evol. Equ. 2015, 15, 583–607. [Google Scholar] [CrossRef]
- Gelfand, I.M.; Shilov, G.E. Generalized Functions; Academic Press: New York, NY, USA; London, UK, 1967; Volume 2. [Google Scholar]
- Ascanelli, A.; Cappiello, M. Schrödinger-type equations in Gefand-Shilov spaces. J. Math. Pures Appl. 2019, 132, 207–250. [Google Scholar] [CrossRef] [Green Version]
- Arias, A., Jr.; Ascanelli, A.; Cappiello, M. The Cauchy problem for 3-evolutions equations with data in Gelfand-Shilov spaces. arXiv 2020, arXiv:2009.10366. [Google Scholar]
- Cappiello, M.; Rodino, L. SG-pseudodifferential operators and Gelfand-Shilov spaces. Rocky Mt. J. Math. 2006, 36, 1118–1148. [Google Scholar] [CrossRef]
- Cordes, H.O. The Technique of Pseudo-Differential Operators; Cambridge Univ. Press: Cambridge, UK, 1995. [Google Scholar]
- Coriasco, S. Fourier integral operators in SG classes.I. Composition theorems and action on SG-Sobolev spaces. Rend. Sem. Mat. Univ. Pol. Torino 1999, 57, 249–302. [Google Scholar]
- Coriasco, S. Fourier integral operators in SG classes.II. Application to SG hyperbolic Cauchy problems. Ann. Univ. Ferrara Sez VII 1998, 44, 81–122. [Google Scholar]
- Egorov, Y.V.; Schulze, B.-W. Pseudo-Differential Operators, Singularities, Applications; Operator Theory: Advances and Applications 93; Birkhäuser Verlag: Basel, Switzerland, 1997. [Google Scholar]
- Nicola, F.; Rodino, L. Global Pseudo-Differential Calculus on Euclidean Spaces; Birkhäuser: Basel, Switzerland, 2010; Volume 4. [Google Scholar]
- Parenti, C. Operatori pseudodifferenziali in e applicazioni. Ann. Mat. Pura Appl. 1972, 93, 359–389. [Google Scholar] [CrossRef]
- Schrohe, E. Spaces of weighted symbols and weighted Sobolev spaces on manifolds. In Proceedings, Oberwolfach, 1256; Cordes, H.O., Gramsch, B., Widom, H., Eds.; Springer: New York, NY, USA, 1986; pp. 360–377. [Google Scholar]
- Camperi, I. Global hypoellipticity and Sobolev estimates for generalized SG-pseudo-differential operators. Rend. Sem. Mat. Univ. Pol. Torino 2008, 66, 99–112. [Google Scholar]
- Cappiello, M.; Gramchev, T.; Rodino, L. Sub-exponential decay and uniform holomorphic extensions for semilinear pseudodifferential equations. Commun. Partial Differ. Equ. 2010, 35, 846–877. [Google Scholar] [CrossRef]
- Bierstone, E.; Milman, P.D. Resolution of singularities in Denjoy-Carleman classes. Sel. Math. 2004, 10, 1. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias Junior, A.; Cappiello, M. On the Sharp Gårding Inequality for Operators with Polynomially Bounded and Gevrey Regular Symbols. Mathematics 2020, 8, 1938. https://doi.org/10.3390/math8111938
Arias Junior A, Cappiello M. On the Sharp Gårding Inequality for Operators with Polynomially Bounded and Gevrey Regular Symbols. Mathematics. 2020; 8(11):1938. https://doi.org/10.3390/math8111938
Chicago/Turabian StyleArias Junior, Alexandre, and Marco Cappiello. 2020. "On the Sharp Gårding Inequality for Operators with Polynomially Bounded and Gevrey Regular Symbols" Mathematics 8, no. 11: 1938. https://doi.org/10.3390/math8111938
APA StyleArias Junior, A., & Cappiello, M. (2020). On the Sharp Gårding Inequality for Operators with Polynomially Bounded and Gevrey Regular Symbols. Mathematics, 8(11), 1938. https://doi.org/10.3390/math8111938