GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio
Abstract
:1. Introduction
2. Related Work
2.1. Risk Based Portfolio
2.2. Volatility Modeling
3. GO-GJRSK Model
3.1. Univariate GJRSK Model
3.2. GO-GJRSK Model
3.3. Estimation Procedure
- Step1 VAR Model:First, we estimate the vector autoregression model (VAR) model in Equation (15). After estimating the parameter of VAR model, the residuals have been collected for further GO-GJRSK modeling.
- Step2 Independent Component Analysis:ICA is a signal processing method to express a set of random variables as linear combinations of statistically independent component variables [33]. If and are mutually statistically independent, and mixing matrix Z exists, such that:
- Step3 Estimate Univariate GJRSK Model:Once the independent components are obtained, the conditional variance, conditional skewness, and conditional kurtosis of independent components can be estimated by the univariate GJRSK model. The parameters of the univariate GARCHSK model can be estimated by maximizing the log-likelihood function in Equation (11).
4. Experiment
4.1. Dataset
4.2. Higher Order Risk-Based Portfolio
4.3. Minimum Variance Portfolio with Higher Moments
4.4. Risk Parity Portfolio with Higher Moments
4.5. Experimental Settings
- “MLE” stands for maximum likelihood estimation of covariance, co-skewness and co-kurtosis matrix;
- “GO” stands for covariance matrix in GO-GARCH model [12];
- “GO-SK” stands for covariance, co-skewness and co-kurtosis matrix in GO-GARCHSK model [32];
- “GO-GJRSK” stands for covariance, co-skewness, and co-kurtosis matrix in our proposed GO-GJRSK model.
4.6. Performance Measures
4.7. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ARCH | autoregressive conditional heteroscedasticity |
GARCH | generalized ARCH |
GARCHSK | GARCH with skewness and kurtosis |
GJR | Glosten, Jagannathan and Runkle GARCH |
GJRSK | GJR with skewness and kurtosis |
DCC | dynamic conditional correlation |
O-GARCH | orthogonal GARCH |
GO-GARCH | generalized O-GARCH |
GO-GARCHSK | GO-GARCH with skewness and kurtosis |
GO-GJRSK | GO-GJR with skewness and kurtosis |
ICA | independent component analysis |
VAR | vector autoregression |
FF17 | Fama French dataset for 17 sectors |
FF25 | Fama French dataset for 25 factors |
EW | equally weight portfolio |
MV | minimum variance portfolio |
HMV | minimum variance portfolio with higher moments |
RP | risk parity portfolio |
HRP | risk parity portfolio with higher moments |
MLE | maximum likelihood estimator |
AR | annualized return |
DR | annualized downside risk |
R/R | AR/DR |
References
- Mandelbrot, B.B. The variation of certain speculative prices. In Fractals and Scaling in Finance; Springer: Berlin/Heidelberg, Germany, 1997; pp. 371–418. [Google Scholar]
- Cont, R. Empirical properties of asset returns: Stylized facts and statistical issues. Quant. Financ. 2001, 1, 223–236. [Google Scholar] [CrossRef]
- Jegadeesh, N.; Titman, S. Returns to buying winners and selling losers: Implications for stock market efficiency. J. Financ. 1993, 48, 65–91. [Google Scholar] [CrossRef]
- Jegadeesh, N. Evidence of predictable behavior of security returns. J. Financ. 1990, 45, 881–898. [Google Scholar] [CrossRef]
- Engle, R.F. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econom. J. Econom. Soc. 1982, 50, 987–1007. [Google Scholar] [CrossRef]
- Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef] [Green Version]
- León, Á.; Rubio, G.; Serna, G. Autoregresive conditional volatility, skewness and kurtosis. Q. Rev. Econ. Financ. 2005, 45, 599–618. [Google Scholar] [CrossRef]
- Glosten, L.R.; Jagannathan, R.; Runkle, D.E. On the relation between the expected value and the volatility of the nominal excess return on stocks. J. Financ. 1993, 48, 1779–1801. [Google Scholar] [CrossRef]
- Boyer, B.; Mitton, T.; Vorkink, K. Expected idiosyncratic skewness. Rev. Financ. Stud. 2010, 23, 169–202. [Google Scholar] [CrossRef]
- Blau, B.M.; Whitby, R.J. Idiosyncratic kurtosis and expected returns. J. Investig. 2017, 26, 81–88. [Google Scholar] [CrossRef]
- Engle, R.F.; Ledoit, O.; Wolf, M. Large dynamic covariance matrices. J. Bus. Econ. Stat. 2019, 37, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Van der Weide, R. GO-GARCH: A multivariate generalized orthogonal GARCH model. J. Appl. Econom. 2002, 17, 549–564. [Google Scholar] [CrossRef]
- Boudt, K.; Carl, P.; Peterson, B.G. Asset allocation with conditional value-at-risk budgets. J. Risk 2012, 15, 39–68. [Google Scholar] [CrossRef]
- Markowitz, H. Portfolio selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Michaud, R.O. The Markowitz optimization enigma: Is ‘optimized’optimal? Financ. Anal. J. 1989, 45, 31–42. [Google Scholar] [CrossRef]
- Chopra, V.K.; Ziemba, W.T. The effect of errors in means, variances, and covariances on optimal portfolio choice. In Handbook of the Fundamentals of Financial Decision Making: Part I; World Scientific: Singapore, 2013; pp. 365–373. [Google Scholar]
- Clarke, R.G.; De Silva, H.; Thorley, S. Minimum-variance portfolios in the US equity market. J. Portf. Manag. 2006, 33, 10–24. [Google Scholar] [CrossRef]
- Maillard, S.; Roncalli, T.; Teïletche, J. The properties of equally weighted risk contribution portfolios. J. Portf. Manag. 2010, 36, 60–70. [Google Scholar] [CrossRef]
- Choueifaty, Y.; Coignard, Y. Toward maximum diversification. J. Portf. Manag. 2008, 35, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Lee, W. Risk-Based Asset Allocation: A New Answer to an Old Question? J. Portf. Manag. 2011, 37, 11. [Google Scholar] [CrossRef]
- Nakagawa, K.; Imamura, M.; Yoshida, K. Risk-based portfolios with large dynamic covariance matrices. Int. J. Financ. Stud. 2018, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Nirwan, R.S.; Bertschinger, N. Applications of gaussian process latent variable models in finance. In Proceedings of the SAI Intelligent Systems Conference, London, UK, 5–6 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1209–1221. [Google Scholar]
- Uchiyama, Y.; Nakagawa, K. TPLVM: Portfolio Construction by Student’s t-Process Latent Variable Model. Mathematics 2020, 8, 449. [Google Scholar] [CrossRef] [Green Version]
- Uchiyama, Y.; Kadoya, T.; Nakagawa, K. Complex Valued Risk Diversification. Entropy 2019, 21, 119. [Google Scholar] [CrossRef] [Green Version]
- Sugitomo, S.; Maeta, K. Quaternion Valued Risk Diversification. Entropy 2020, 22, 390. [Google Scholar] [CrossRef] [Green Version]
- Martellini, L.; Ziemann, V. Improved estimates of higher-order comoments and implications for portfolio selection. Rev. Financ. Stud. 2010, 23, 1467–1502. [Google Scholar] [CrossRef]
- Baitinger, E.; Dragosch, A.; Topalova, A. Extending the risk parity approach to higher moments: Is there any value added? J. Portf. Manag. 2017, 43, 24–36. [Google Scholar] [CrossRef]
- Engle, R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. J. Bus. Econ. Stat. 2002, 20, 339–350. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 1993, 33, 3–56. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. A five-factor asset pricing model. J. Financ. Econ. 2015, 116, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z. Time Series Analysis of Speculative Returns; Department of Economics, University of California: San Diego, CA, USA, 1994. [Google Scholar]
- Xu, Q.F.; Jiang, C.X.; Kang, P. Dynamic portfolio selection under higher moments. In Proceedings of the 2007 International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007; IEEE: Piscataway, NJ, USA, 2007; Volume 5, pp. 2488–2493. [Google Scholar]
- Comon, P. Independent component analysis, a new concept? Signal Process. 1994, 36, 287–314. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. A fast fixed-point algorithm for independent component analysis. Neural Comput. 1997, 9, 1483–1492. [Google Scholar] [CrossRef]
- Jondeau, E.; Rockinger, M. Optimal portfolio allocation under higher moments. Eur. Financ. Manag. 2006, 12, 29–55. [Google Scholar] [CrossRef] [Green Version]
- DeMiguel, V.; Garlappi, L.; Uppal, R. Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? Rev. Financ. Stud. 2009, 22, 1915–1953. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.C.; Grant, A.L. Modeling energy price dynamics: GARCH versus stochastic volatility. Energy Econ. 2016, 54, 182–189. [Google Scholar] [CrossRef] [Green Version]
Non-Normality | Higher Moment | Leverage Effect | |
---|---|---|---|
GO-GARCH [12] | 〇 | ||
GO-GARCHSK [32] | 〇 | 〇 | |
GO-GJRSK (Our proposed) | 〇 | 〇 | 〇 |
FF17 | EW | MV | HMV | RP | HRP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MLE | GO | MLE | GO-SK | GO-GJRSK | MLE | GO | MLE | GO-SK | GO-GJRSK | ||
AR [%] | 11.31 | 10.69 | 10.26 | 11.24 | 11.02 | 12.03 | 11.36 | 11.36 | 11.35 | 11.01 | 12.37 |
DR [%] | 12.06 | 9.17 | 9.07 | 11.55 | 11.81 | 9.47 | 11.52 | 11.52 | 11.53 | 11.64 | 10.61 |
R/R | 0.94 | 1.17 | 1.13 | 0.97 | 0.93 | 1.27 | 0.99 | 0.99 | 0.98 | 0.95 | 1.17 |
FF25 | EW | MV | HMV | RP | HRP | ||||||
MLE | GO | MLE | GO-SK | GO-GJRSK | MLE | GO | MLE | GO-SK | GO-GJRSK | ||
AR [%] | 13.20 | 11.58 | 11.69 | 12.83 | 12.45 | 13.81 | 13.06 | 13.07 | 12.97 | 12.71 | 14.05 |
DR [%] | 14.34 | 10.94 | 10.82 | 13.91 | 14.32 | 11.54 | 13.89 | 13.89 | 13.88 | 14.20 | 11.38 |
R/R | 0.92 | 1.06 | 1.08 | 0.92 | 0.87 | 1.20 | 0.94 | 0.94 | 0.93 | 0.90 | 1.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakagawa, K.; Uchiyama, Y. GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio. Mathematics 2020, 8, 1990. https://doi.org/10.3390/math8111990
Nakagawa K, Uchiyama Y. GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio. Mathematics. 2020; 8(11):1990. https://doi.org/10.3390/math8111990
Chicago/Turabian StyleNakagawa, Kei, and Yusuke Uchiyama. 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio" Mathematics 8, no. 11: 1990. https://doi.org/10.3390/math8111990
APA StyleNakagawa, K., & Uchiyama, Y. (2020). GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio. Mathematics, 8(11), 1990. https://doi.org/10.3390/math8111990