Mathematical Model of Fractional Duffing Oscillator with Variable Memory
Abstract
:1. Introduction
2. Preliminary Material on Fractional Calculus
3. Problem Statement and Numerical Solution
4. Lyapunov Exponents
- Select the starting point of the vector and together with it we will track the K disturbed trajectories. Let .
- We solve the original equation numerically together with three sets of perturbed equations or equations in variations (7). As the initial vectors for equations in variations, you must select a set of vectors , that are orthogonal and normalized by one.
- After time T, the trajectory will move to the point vector , the perturbation vectors , which we renormalize using the Gram–Schmidt method.
- Next, we continue counting from the point and the perturbation vectors . After a regular time interval T, we get a new set of perturbation vectors , which is subjected to orthogonalization and renormalization.
- Steps 2–4 are repeated M times, and the sums of the calculations are calculated: , which include perturbation vectors before renormalization, but after orthogonalization.
- The estimation of the first three Lyapunov exponents is calculated using the formula:
5. Forced Oscillations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AFC | Amplitude–Frequency Characteristics |
PFC | Phase-Frequency Characteristics |
Q-factor | Quality Factor |
References
- Volterra, V. Sur les equations integro-differentielles et leurs applications. Acta Math. 1912, 35, 295–356. [Google Scholar] [CrossRef]
- Vlasov, V.; Rautian, N. A Study of Operator Models Arising in Problems of Hereditary Mechanics. J. Math Sci. 2020, 244, 170–182. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Q. Systems and synthetic biology approaches in understanding biological oscillators. Quant Biol. 2018, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danylchuk, H.; Kibalnyk, L.; Serdiuk, O. Study of critical phenomena in economic systems using a model of damped oscillations. SHS Web Conf. 2019, 65, 06008. [Google Scholar] [CrossRef]
- Oldham, K.; Spanier, J. The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order; Academic Press: London, UK, 1974; p. 240. [Google Scholar]
- Miller, K.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differntial Equations; A Wiley-Interscience Publication: New York, NY, USA, 1993; p. 384. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204, p. 523. [Google Scholar]
- Syta, A.; Litak, G.; Lenci, S.; Scheffler, M. Chaotic vibrations of the duffing system with fractional damping. Chaos Interdiscip. J. Nonlinear Sci. 2014, 24, 013107. [Google Scholar] [CrossRef]
- Jiménez, S.; Zufiria, P. Characterizing chaos in a type of fractional Duffing’s equation. Conf. Publ. Am. Inst. Math. Sci. 2015, 2015, 660–669. [Google Scholar] [CrossRef]
- Xing, W.; Chen, E.; Chang, Y.; Wang, M. Threshold for chaos of a duffing oscillator with fractional-order derivative. Shock Vib. 2019, 2019, 1230194. [Google Scholar] [CrossRef]
- Liu, Q.X.; Liu, J.K.; Chen, Y.M. An analytical criterion for jump phenomena in fractional Duffing oscillators. Chaos Solitons Fractals 2017, 98, 216–219. [Google Scholar] [CrossRef]
- Eze, S.C. Analysis of fractional Duffing oscillator. Rev. Mex. Fis. 2019, 66, 187–191. [Google Scholar] [CrossRef]
- Wang, Y.; An, J.Y. Amplitude–frequency relationship to a fractional Duffing oscillator arising in microphysics and tsunami motion. J. Low Freq. Noise Vib. Act. Control 2019, 38, 1008–1012. [Google Scholar] [CrossRef]
- Ejikeme, C.L.; Oyesanya, M.O.; Agbebaku, D.F.; Okofu, M.B. Solution to nonlinear Duffing oscillator with fractional derivatives using homotopy analysis method (HAM). Glob. J. Pure Appl. Math. 2018, 14, 1363–1388. [Google Scholar]
- Atanackovic, T.; Pilipovic, S. Hamilton’s principle with variable order fractional derivatives. Fract. Calc. Appl. Anal. 2011, 14, 94–109. [Google Scholar] [CrossRef] [Green Version]
- Kim, V.A. Duffing oscillator with external harmonic action and variable fractional Riemann–Liouville derivative characterizing viscous friction. Bull. KRASEC Phys. Math. Sci. 2016, 13, 46–49. [Google Scholar]
- Oseledets, V.I. A Multiplicative ergodic theorem. Characteristic Lyapunov exponents of dynamical systems. Proc. Mosc. Math. Soc. 1968, 19, 197–231. [Google Scholar]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Physica 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Kim, V.A.; Parovik, R.I. Calculation of maximal Lyapunov exponents for an oscillatory Duffing system with power memory. Bull. KRASEC Phys. Math. Sci. 2018, 23, 98–105. [Google Scholar] [CrossRef]
- Pskhu, A.; Rekhviashvili, S. Analysis of Forced Oscillations of a Fractional Oscillator. Tech. Phys. Lett. 2018, 44, 1218–1221. [Google Scholar] [CrossRef]
- Parovik, R.I. Amplitude-frequency and phase-frequency performances of forced oscillations of a nonlinear fractional oscillator. Tech. Phys. Lett. 2019, 45, 660–663. [Google Scholar] [CrossRef]
- Parovik, R. Mathematical Modeling of Linear Fractional Oscillators. Mathematics 2020, 8, 1879. [Google Scholar] [CrossRef]
- Kim, V.A.; Parovik, R.I. Investigation of forced oscillations of a Duffing oscillator with a derivative of a variable fractional Riemann–Liouville order. Izv. Kabard. Balkar Sci. Cent. Russ. Acad. Sci. 2020, 93, 46–56. [Google Scholar] [CrossRef]
- Huang, X.L.; Ma, X.; Hu, F. Machine learning and intelligent communications. Mob. Netw. Appl. 2018, 23, 68–70. [Google Scholar] [CrossRef] [Green Version]
- Pirmohabbati, P.; Sheikhani, A.R.; Najafi, H.S.; Ziabari, A.A. Numerical solution of full fractional Duffing equations with Cubic-Quintic-Heptic nonlinearities. AIMS Math. 2020, 5, 1621–1641. [Google Scholar] [CrossRef]
N | h | ||
---|---|---|---|
10 | 0.1 | 0.004687083 | 1.790194986 |
20 | 0.05 | 0.002235479 | 1.654513226 |
40 | 0.025 | 0.001091317 | 1.556442049 |
80 | 0.0125 | 0.000541437 | 1.481975798 |
160 | 0.00625 | 0.00027377 | 1.422116237 |
320 | 0.003125 | 0.000144443 | 1.368516573 |
640 | 0.0015625 | 0.0000852632 | 1.309611649 |
1280 | 0.00078125 | 0.0000641111 | 1.230273342 |
2560 | 0.000390625 | 0.000067112 | 1.125073091 |
5120 | 0.0001953125 | 0.000090636 | 1.008079025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, V.; Parovik, R. Mathematical Model of Fractional Duffing Oscillator with Variable Memory. Mathematics 2020, 8, 2063. https://doi.org/10.3390/math8112063
Kim V, Parovik R. Mathematical Model of Fractional Duffing Oscillator with Variable Memory. Mathematics. 2020; 8(11):2063. https://doi.org/10.3390/math8112063
Chicago/Turabian StyleKim, Valentine, and Roman Parovik. 2020. "Mathematical Model of Fractional Duffing Oscillator with Variable Memory" Mathematics 8, no. 11: 2063. https://doi.org/10.3390/math8112063
APA StyleKim, V., & Parovik, R. (2020). Mathematical Model of Fractional Duffing Oscillator with Variable Memory. Mathematics, 8(11), 2063. https://doi.org/10.3390/math8112063