First Integrals of Differential Operators from SL(2,ℝ) Symmetries
Abstract
:1. Introduction
2. Preliminaries
2.1. Distributions of Vector Fields and Their Symmetries
2.2. Solvable Structures for Integrable Distributions
- 1.
- the distribution has maximal rank h and is transversal to in U, for ;
- 2.
- is distribution of maximal rank on U;
- 3.
- , for .
2.3. Jacobi Multipliers for Integrable Distributions
3. Second-Order -Invariant ODEs
3.1. On the Functional Independence of the First Integrals (8)
3.1.1. Non-Linearizable Equations
3.1.2. Linearizable Equations
4. First Integrals for nth-Order -Invariant ODEs
- 1.
- For Equation (33) admits, apart from (34), the Lie point symmetry It is easy to check that the prolongation satisfies the commutation relations (36). Let U denote the open set of where the distributions for have maximal rank. By Theorem 5, the symmetry generators (35) and Y is all we need to calculate the two non-constant first integrals (29), fordefined for The Jacobian determinantdoes not vanish in and hence the functions given in (38) are functionally independent in
- 2.
- whose prolongationsatisfies the commutation relations (36).Such first integrals are constructed through (29) by using the corresponding 2-form (37) and the symmetry generators (34)–(39). The corresponding first integrals become:Both first integrals are functionally dependent, because the relation holds.
- 1.
- We recall that (38) are two functionally independent first integrals of Equation (33) when Therefore, we only need to find one additional first integral, than can be done by using any of the corresponding 1-forms (41) for or for For instance, the 1-formis closed, and hence locally exact. A corresponding primitive arises by direct integration:
- 2.
5. Conclusions and Further Extensions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Clarkson, P.A.; Olver, P.J. Symmetry and the Chazy equation. J. Diff. Eqns. 1996, 214, 225–246. [Google Scholar] [CrossRef] [Green Version]
- Govinder, K.S. On the equivalence of non-equivalent algebraic realizations. J. Phys. A Math. Theor. 2007, 40, 8386. [Google Scholar] [CrossRef]
- Mgaga, T.C.; Govinder, K.S. On the linerization of some second-order ODEs via contact transformations. J. Phys. A Math. Theor. 2010, 44, 015203. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Nucci, M.C. Integration of third order ordinary differential equations by Lie’s method: Equations admitting three-dimensional Lie algebras. Lie Groups Appl. 1994, 1, 49–64. [Google Scholar]
- Muriel, C.; Romero, J.L. -symmetries and non-solvable symmetry algebras. IMA J. Appl. Math. 2001, 66, 477–498. [Google Scholar] [CrossRef]
- Barco, M.A.; Prince, G.E. Solvable symmetry structures in differential form applications. Acta Appl. Math. 2001, 66, 89–121. [Google Scholar] [CrossRef]
- Barco, M.A.; Prince, G.E. New symmetry solution techniques for first-order non-linear PDEs. Appl. Math. Comput. 2001, 124, 169–196. [Google Scholar]
- Basarab-Horwath, P. Integrability by quadratures for systems of involutive vector fields. Ukrain. Math. J. 1991, 43, 1236–1242. [Google Scholar] [CrossRef]
- Catalano Ferraioli, D.; Morando, P. Local and nonlocal solvable structures in the reduction of ODEs. J. Phys. A Math Theor. 2009, 42, 1–15. [Google Scholar]
- Catalano Ferraioli, D.; Morando, P. Integration of some examples of geodesic flows via solvable structures. J. Nonlinear Math. Phys. 2014, 21, 521–532. [Google Scholar] [CrossRef]
- Hartl, T.; Athorne, C. Solvable structures and hidden symmetries. J. Phys. A Math Gen. 1994, 27, 3463–3471. [Google Scholar] [CrossRef]
- Sherring, J.; Prince, G.E. Geometric aspects of reduction of order. Trans. Am. Math. Soc. 1992, 334, 433–453. [Google Scholar] [CrossRef]
- Ruiz, A.; Muriel, C. Solvable structures associated to the nonsolvable symmetry algebra . SIGMA 2016, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, A.; Muriel, C. First integrals and parametric solutions of third-order ODEs admitting . J. Phys. A Math. Theor. 2017, 50, 205201. [Google Scholar] [CrossRef]
- Morando, P.; Muriel, C.; Ruiz, A. Generalized solvable structures and first integrals for ODEs admitting an symmetry algebra. J. Nonlinear Math. Phys. 2018, 26, 188–201. [Google Scholar] [CrossRef]
- Stephani, H. Differential Equations. Their Solution Using Symmetries; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Sardanashvily, G. Advanced Differential Geometry for Theoreticians; Lap Lambert Academic Publishing: Saarbrucken, Germany, 2013. [Google Scholar]
- Spivak, M. A Comprehensive Introduction to Differential Geometry; Publish or Perish, INC: Houston, TX, USA, 1999; Volume 1. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations Graduate Texts in Mathematics; Springer: Berlin, Germany; New York, NY, USA, 2000. [Google Scholar]
- Nucci, M.C.; Leach, P.G.L. Jacobi’s last multiplier and the complete symmetry group of the Euler-Poinsot system. J. Nonlinear Math. Phys. 2002, 9, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Nucci, M.C.; Leach, P.G.L. Jacobi’s last multiplier and the complete symmetry group of the Ermakov-Pinney equation. J. Nonlinear Math. Phys. 2005, 12, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Nucci, M.C. Jacobi last multiplier and Lie symmetries: A novel application of an old relationship. J. Nonlinear Math. Phys. 2005, 12, 284–304. [Google Scholar] [CrossRef] [Green Version]
- Mahomed, F.M.; Leach, P.G.L. Lie algebras associated with scalar second-order ordinary differential equations. J. Math. Phys. 1989, 30, 2770–2777. [Google Scholar] [CrossRef]
- Lie, S. Vorlesungen über Differentialgleichungen mit Bekannten Infinitesimalen Transformationen; Teubner: Leipzig, Germany, 1912. [Google Scholar]
- Mahomed, F.M. Symmetry group classification of ordinary differential equations: Survey of some results. Math. Methods App. Sci. 2007, 30, 1995–2012. [Google Scholar] [CrossRef]
- Mahomed, F.M.; Leach, P.G.L. The Lie algebra and linearization. Quaestiones Math. 1989, 12, 121–139. [Google Scholar] [CrossRef]
- Sarlet, W.; Mahomed, F.M.; Leach, P.G.L. Symmetries of nonlinear differential equations and linearisation. J. Phys. A Math. Gen. 1987, 20, 277–292. [Google Scholar] [CrossRef]
- Leach, P.G.L. Equivalence classes of second-order ordinary differential equations with only a three-dimensional Lie algebra of point symmetries and linearisation. J. Math. Anal. Appl. 2003, 284, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Winternitz, P. Subalgebras of Lie algebras. Example of . In Symmetry in Physics, in Memory of Robert T. Sharp, CRM Proceedings and Lectures Notes; American Mathematical Society: Providence, RI, USA, 2004; Volume 34, pp. 215–227. [Google Scholar]
- Popovych, R.O.; Boyko, V.M.; Nesterenko, M.O.; Lutfullin, M.W. Realizations of real lower-dimensional Lie algebras. J. Phys. A Math. Gen. 2003, 36, 7337–7360. [Google Scholar] [CrossRef]
- González-López, A.; Kamran, N.; Olver, P.J. Lie algebras of vector fields in the real plane. Proc. London Math. Soc. 1992, 64, 339–368. [Google Scholar] [CrossRef] [Green Version]
- Andriopoulos, K.; Leach, P.G.L.; Flessas, G.P. Complete symmetry groups of ordinary differential equations and their integrals: Some basic considerations. J. Math. Anal. Appl. 2001, 262, 256–273. [Google Scholar] [CrossRef] [Green Version]
- Warner, F.W. Foundations of Differentiable Manifolds and Lie Groups; Spriger: New York, NY, USA, 1983. [Google Scholar]
- Krause, J. On the complete symmetry group of the classical Kepler system. J. Math. Phys. 1994, 35, 5734–5748. [Google Scholar] [CrossRef] [Green Version]
- Leach, P.G.L.; Cotsakis, S.; Flessas, G.P. Symmetry, singularity and integrability in complex dynamics: I. The reduction problem. J. Nonlinear Math. Phys. 2000, 7, 445–479. [Google Scholar] [CrossRef] [Green Version]
- Leach, P.G.L.; Andriopoulos, K.; Nucci, M.C. The Ermanno-Bernoulli constants and representations of the complete symmetry group of the Kepler problem. J. Math. Phys. 2003, 44, 4090–4106. [Google Scholar] [CrossRef] [Green Version]
- Leach, P.G.L.; Naicker, V. Symmetry, singularity and integrability: The final question? Trans. Roy. Soc. S. Afr. 2003, 58, 1–10. [Google Scholar] [CrossRef]
- Abraham-Shrauner, B.; Leach, P.G.L.; Govinder, K.S.; Ratcliff, G. Hidden and contact symmetries of ordinary differential equations. J. Phys. A Math. Gen. 1995, 28, 6707–6716. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morando, P.; Muriel, C.; Ruiz, A. First Integrals of Differential Operators from SL(2,ℝ) Symmetries. Mathematics 2020, 8, 2167. https://doi.org/10.3390/math8122167
Morando P, Muriel C, Ruiz A. First Integrals of Differential Operators from SL(2,ℝ) Symmetries. Mathematics. 2020; 8(12):2167. https://doi.org/10.3390/math8122167
Chicago/Turabian StyleMorando, Paola, Concepción Muriel, and Adrián Ruiz. 2020. "First Integrals of Differential Operators from SL(2,ℝ) Symmetries" Mathematics 8, no. 12: 2167. https://doi.org/10.3390/math8122167
APA StyleMorando, P., Muriel, C., & Ruiz, A. (2020). First Integrals of Differential Operators from SL(2,ℝ) Symmetries. Mathematics, 8(12), 2167. https://doi.org/10.3390/math8122167