A Multivariate Hybrid Stochastic Differential Equation Model for Whole-Stand Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hybrid Model and Its Characteristics
2.2. Maximum Log-Likelihood Function
2.3. Data
3. Results
3.1. Parameter Estimators
3.2. Bivariate Distributions
4. Discussion
4.1. Models of Tree Density, Diameter, and Height Mean Dynamics
4.2. Models of Stand Basal Area
4.3. Models of Stand Volume
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Munro, D. Forest growth models—A prognosis. In Growth Models for Tree and Stand Simulation; Fries, J., Ed.; Royal College of Forestry: Stockholm, Sweden, 1974. [Google Scholar]
- Rupšys, P.; Petrauskas, E. A New Paradigm in Modelling the Evolution of a Stand via the Distribution of Tree Sizes. Sci. Rep. 2017, 7, 15875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayat, M.; Bettinger, P.; Heidari, S.; Henareh Khalyani, A.; Jourgholami, M.; Hamidi, S.K. Estimation of Tree Heights in an Uneven-Aged, Mixed Forest in Northern Iran Using Artificial Intelligence and Empirical Models. Forests 2020, 11, 324. [Google Scholar] [CrossRef] [Green Version]
- Rupšys, P. The Use of Copulas to Practical Estimation of Multivariate Stochastic Differential Equation Mixed Effects Models. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2015; Volume 1684, p. 080011. [Google Scholar]
- Long, S.; Zeng, S.; Liu, F.; Wang, G. Influence of slope, aspect and competition index on the height-diameter relationship of Cyclobalanopsis glauca trees for improving prediction of height in mixed forests. Silva Fenn. 2020, 54, 10242. [Google Scholar] [CrossRef] [Green Version]
- Rupšys, P. Understanding the Evolution of Tree Size Diversity within the Multivariate nonsymmetrical Diffusion Process and Information Measures. Mathematics 2019, 7, 761. [Google Scholar] [CrossRef] [Green Version]
- Uhlenbeck, G.E.; Ornstein, L.S. On the Theory of Brownian Motion. Phys. Rev. 1930, 36, 823–841. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, T.; Gao, N.; Song, Y. Dynamical Behavior of a Stochastic SIRC Model for Influenza A. Symmetry 2020, 12, 745. [Google Scholar] [CrossRef]
- Petrauskas, E.; Rupšys, P.; Narmontas, M.; Aleinikovas, M.; Beniušienė, L.; Šilinskas, B. Stochastic Models to Qualify Stem Tapers. Algorithms 2020, 13, 94. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.A.F. Mittag–Leffler Memory Kernel in Lévy Flights. Mathematics 2019, 7, 766. [Google Scholar] [CrossRef] [Green Version]
- Rupšys, P. Modeling Dynamics of Structural Components of Forest Stands Based on Trivariate Stochastic Differential Equation. Forests 2019, 10, 506. [Google Scholar]
- Narmontas, M.; Rupšys, P.; Petrauskas, E. Models for Tree Taper Form: The Gompertz and Vasicek Diffusion Processes Framework. Symmetry 2020, 12, 80. [Google Scholar] [CrossRef] [Green Version]
- Bruner, H.D.; Moser, J.W. A Markov chain approach to the predictions of diameter distributions in uneven-aged forest stand. Can. J. For. Res. 1973, 3, 409–417. [Google Scholar] [CrossRef]
- Shen, W.; Mao, X.; He, J.; Dong, J.; Huang, C.; Li, M. Understanding Current and Future Fragmentation Dynamics of Urban Forest Cover in the Nanjing Laoshan Region of Jiangsu, China. Remote Sens. 2020, 12, 155. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Umemura, T. Forest transition as a stochastic process II. In Growth Models for Tree and Stand Simulation; No. 30. IUFRO Conference Proceedings, Stockholm; Frie, J.S., Ed.; Royal College of Forestry: Stockholm, Sweden, 1974. [Google Scholar]
- Rupšys, P. New Insights into Tree Height Distribution Based on Mixed Effects Univariate Diffusion Processes. PLoS ONE 2016, 11, e0168507. [Google Scholar] [CrossRef] [PubMed]
- Rupšys, P. Univariate and Bivariate Diffusion Models: Computational Aspects and Applications to Forestry. In Stochastic Differential Equations: Basics and Applications; Deangelo, T.G., Ed.; Nova Science Publisher’s: New York, NY, USA, 2018; pp. 1–77. [Google Scholar]
- Pekar, M. Thermodynamic Driving Forces and Chemical Reaction Fluxes; Reflections on the Steady State. Molecules 2020, 25, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrauskas, E.; Bartkevičius, E.; Rupšys, P.; Memgaudas, R. The use of stochastic differential equations to describe stem taper and volume. Baltic For. 2013, 19, 43–151. [Google Scholar]
- Gutiérrez, R.; Gutiérrez-Sánchez, R.; Nafidi, A.; Pascual, A. Detection, modelling and estimation of non-linear trends by using a non-homogeneous Vasicek stochastic diffusion. Application to CO2 emissions in Morocco. Stoch. Environ. Res. Risk. Assess. 2011, 26, 533–543. [Google Scholar] [CrossRef]
- Román-Román, P.; Serrano-Pérez, J.J.; Torres-Ruiz, F. A Note on Estimation of Multi-Sigmoidal Gompertz Functions with Random Noise. Mathematics 2019, 7, 541. [Google Scholar] [CrossRef] [Green Version]
- Zvonkin, A.K. A transformation of the phase space of a diffusion process that will remove the drift. Math. Sb. 1974, 93, 129–149. [Google Scholar] [CrossRef]
- Arnold, L. Stochastic Differential Equations; John Wiley and Sons: New York, NY, USA, 1973. [Google Scholar]
- Itô, K. On stochastic processes. Jap. J. Math. 1942, 18, 261–301. [Google Scholar] [CrossRef] [Green Version]
- Rupšys, P. Modeling Perspectives of Forest Growth and Yield: Framework of Multivariate Diffusion Process. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2164, p. 060017. [Google Scholar]
- Aučina, A.; Rudawska, M.; Leski, T.; Ryliškis, D.; Pietras, M.; Riepšas, E. Ectomycorrhizal fungal communities on seedlings and conspecific trees of Pinus mugo grown on the coastal dunes of the Curonian Spit in Lithuania. Mycorrhiza 2011, 21, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Fisher, R.A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. A 1922, 222, 309–368. [Google Scholar]
- Monagan, M.B.; Geddes, K.O.; Heal, K.M.; Labahn, G.; Vorkoetter, S.M.; Mccarron, J. Maple Advanced Programming Guide; Maplesoft: Waterloo, ON, Canada, 2007. [Google Scholar]
- Krishnamoorthy, K. Comparison of Approximation Methods for Computing Tolerance Factors for a Multivariate Normal Population. Technometrics 1999, 41, 234–249. [Google Scholar] [CrossRef]
- Buongiorno, J.; Halvorsen, E.A.; Bollandsas, O.M.; Gobakken, T.; Hofstad, O. Optimizing management regimes for carbon storage and other benefits in uneven-aged stands dominated by Norway spruce, with a derivation of economic supply of carbon storage. Scand. J. For. Res. 2012, 27, 460–473. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Tome, M. Modeling Forest Trees and Stands; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Vanclay, J.K. Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests; CAB International: Wallingford, CT, USA, 1994. [Google Scholar]
- Ravaglia, J.; Fournier, R.A.; Bac, A.; Véga, C.; Côté, J.-F.; Piboule, A.; Rémillard, U. Comparison of Three Algorithms to Estimate Tree Stem Diameter from Terrestrial Laser Scanner Data. Forests 2019, 10, 599. [Google Scholar] [CrossRef] [Green Version]
- Student, A. The Probable Error of a Mean. Biometrika 1908, 6, 1–25. [Google Scholar] [CrossRef]
- Che, S.; Tan, X.; Xiang, C.; Sun, J.; Hu, X.; Zhang, X.; Duan, A.; Zhang, J. Stand basal area modelling for Chinese fir plantations using an artificial neural network model. J. For. Res. 2019, 30, 1641–1649. [Google Scholar] [CrossRef]
- Torres, A.B.; Lovett, J.C. Using basal area to estimate aboveground carbon stocks in forests: La Primavera Biosphere’s Reserve, Mexico. For. Int. J. For. Res. 2013, 86, 267–281. [Google Scholar]
- Petrauskas, E.; Rupšys, P.; Memgaudas, R. Q-exponential Variable-form of a Steam Taper and Volume Model for Scots Pine (Pinus sylvesteris L.) in Lithuania. Baltic For. 2011, 17, 118–127. [Google Scholar]
- Narmontas, M.; Rupšys, P.; Petrauskas, E. Construction of Reducible Stochastic Differential Equation Systems for Tree Height–Diameter Connections. Mathematics 2020, 8, 1363. [Google Scholar] [CrossRef]
Variable | Trajectory Type | Equation |
---|---|---|
Mean, median and mode | ||
Quantile (0 < p < 1) | * | |
Variance | ||
Mean | ||
Median | ||
Mode | ||
Quantile (0 < p < 1) | * | |
Variance |
Probability Density | ||
---|---|---|
Probability Density | Trajectory Type | Equation |
---|---|---|
Mean, median, and mode | ||
Quantile (0 < p < 1) | ||
Variance | ||
Mean | ||
Median | ||
Mode | ||
Quantile (0 < p < 1) | ||
Variance |
Probability Density | ||
---|---|---|
Probability Density | Trajectory Type | Equation |
---|---|---|
Mean, median, and mode | ||
Quantile (0 < p < 1) | ||
Variance | ||
Mean | ||
Median | ||
Mode | ||
Quantile (0 < p < 1) | ||
Variance |
Probability Density | ||
---|---|---|
Probability Density | ||
---|---|---|
Variable | Trajectory Type | Equation |
---|---|---|
Xj j = 1, 2 | Mean | |
Median | ||
Mode | ||
Quantile (0 < p < 1) | ||
Variance | ||
X3 | Mean Median Mode | |
Quantile (0 < p < 1) | ||
Variance |
Probability Density | Trajectory Type | Equation |
---|---|---|
Mean, median, and mode | ||
Quantile (0 < p < 1) | ||
Variance | ||
Mean | ||
Median | ||
Mode | ||
Quantile (0 < p < 1) | ||
Variance |
Probability Density | Trajectory Type | Equation |
---|---|---|
Mean, median, and mode | ||
Quantile (0 < p < 1) | ||
Variance | ||
Mean | ||
Median | ||
Mode | ||
Quantile (0 < p < 1) | ||
Variance |
Data | Number of Trees (Plots) | Min | Max | Mean | St. Dev. | Number of Plots | Min | Max | Mean | St. Dev. |
---|---|---|---|---|---|---|---|---|---|---|
Estimation | Validation | |||||||||
N | (23) | 2875 | 25,139 | 15,244 | 6345 | (8) | 6418 | 19,255 | 14,717 | 4371 |
d (cm) | 527 (23) | 1.20 | 13.40 | 3.96 | 1.61 | 175 (8) | 1.80 | 8.00 | 4.15 | 1.25 |
h (m) | 527 (23) | 1.50 | 7.90 | 3.55 | 1.11 | 175 (8) | 2.07 | 6.56 | 3.84 | 0.91 |
t (year) | 527 (23) | 53.00 | 123.00 | 92.21 | 20.82 | 175 (8) | 53.00 | 103.00 | 80.60 | 17.50 |
Scenario | Parameters of Drift Term | ||||||||
α1 | β1 | α2 | β2 | α3 | β3 | ||||
Fixed | 0.1884 | 0.0186 | 0.0833 | 0.0558 | 3.5455 | 0.1548 | |||
Mixed | 0.5949 | 0.0598 | 0.7442 | 0.4851 | 3.7622 | 0.3152 | |||
Parameters of Diffusion Term | |||||||||
σ11 | ρ12 | ρ13 | σ22 | ρ23 | σ33 | σ1 | σ2 | σ3 | |
Fixed | 0.0047 | –0.6443 | –0.9999 | 0.0165 | 0.8814 | 0.3845 | - | - | - |
Mixed | 1.9 × 10−5 | –0.9999 | –0.8711 | 0.1313 | 0.7965 | 0.3284 | 0.0398 | 0.1312 | 1.1268 |
(Equation): (Predictors) | Estimation Dataset (Prediction) | Validation Dataset (Forecast) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
B (%) | AB (%) | RMSE (%) | R2 | T p-Value | B (%) | AB (%) | RMSE (%) | R2 | T p-Value | |
Tree density | ||||||||||
(4): (t) | −48.4102 (−15.42) | 4332.14 (33.97) | 4947.44 (69.67) | 0.2564 | 0.8332 | −724.47 (−12.35) | 1985.58 (19.43) | 3270.42 (46.35) | 0.1629 | 0.0040 |
(10): (d,h,t) | −80.9793 (−8.12) | 3011.79 (21.94) | 3751.34 (41.67) | 0.5725 | 0.6204 | 333.50 (−2.07) | 2670.50 (20.51) | 3253.55 (30.20) | 0.1716 | 0.1768 |
(13): (d,t) | −98.8060 (−9.62) | 3350.29 (24.37) | 4142.50 (47.37) | 0.4787 | 0.5842 | 123.34 (−4.11) | 2735.68 (21.35) | 3425.94 (34.64) | 0.0814 | 0.6345 |
(13): (h,t) | −72.9577 (−8.35) | 3014.94 (22.25) | 3777.83 (42.36) | 0.5664 | 0.6577 | 274.36 (−2.56) | 2614.51 (20.31) | 3248.79 (30.36) | 0.1738 | 0.2655 |
Diameter | ||||||||||
(4): (t) | −0.0088 (−15.54) | 1.1923 (34.02) | 1.6504 (47.31) | 0.0000 | 0.9025 | 0.2702 (−2.27) | 1.0449 (25.57) | 1.3191 (31.87) | 0.0000 | 0.0074 |
(10): (N,h,t) | −0.0156 (−5.85) | 0.7091 (19.46) | 0.9528 (26.54) | 0.6482 | 0.7065 | 0.0662 (−2.98) | 0.7928 (19.83) | 1.0176 (25.51) | 0.3427 | 0.3906 |
(13): (N,t) | −0.0271 (−10.60) | 0.9516 (26.56) | 1.3637 (38.20) | 0.2733 | 0.6501 | 0.2704 (0.27) | 0.9947 (24.07) | 1.2880 (30.28) | 0.0000 | 0.0061 |
(13): (h,t) | −0.0128 (−6.00) | 0.7254 (19.81) | 0.9705 (26.85) | 0.6350 | 0.7627 | 0.0300 (−3.89) | 0.7931 (20.21) | 1.0210 (26.50) | 0.3383 | 0.6977 |
Height | ||||||||||
(4): (t) | 0.0047 (−8.54) | 0.8118 (23.69) | 1.1143 (31.48) | 0.0000 | 0.9229 | 0.2944 (2.85) | 0.6847 (16.66) | 0.9155 (21.42) | 0.0000 | 0.00003 |
(10): (N,d,t) | −0.0014 (−2.76) | 0.4862 (14.21) | 0.6448 (18.90) | 0.6652 | 0.9605 | 0.1127 (0.46) | 0.5192 (13.13) | 0.6964 (16.74) | 0.4212 | 0.0336 |
(13): (N,t) | −0.0047 (−5.42) | 0.6118 (18.10) | 0.8411 (25.16) | 0.4302 | 0.8979 | 0.2745 (3.20) | 0.6898 (17.02) | 0.9009 (21.42) | 0.0313 | 0.00008 |
(13): (d,t) | 0.0015 (−3.00) | 0.5338 (15.56) | 0.6993 (20.33) | 0.6061 | 0.9604 | 0.0693 (−0.50) | 0.5541 (14.20) | 0.7031 (17.15) | 0.4101 | 0.1937 |
See Table: (Predictors) | Estimation Dataset | Validation Dataset | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
B (%) | AB (%) | RMSE (%) | R2 | T p-Value | B (%) | AB (%) | RMSE (%) | R2 | T p-Value | |
Tree density | ||||||||||
(1): (t) | 1.6709 (−0.01) | 6.2768 (0.05) | 7.8379 (0.09) | 1.0 | 0.0000 | 0.2336 (−0.01) | 5.4773 (0.04) | 6.9829 (0.7) | 1.0 | 0.6587 |
(5): (d,h,t) | −1.0965 (−0.06) | 80.4988 (0.46) | 108.7885 (0.60) | 0.9996 | 0.8171 | −1.172 (−0.01) | 68.4800 (0.43) | 88.6621 (0.54) | 0.9994 | 0.8614 |
(3): (d,t) | −1.0340 (−0.01) | 81.9300 (0.46) | 111.9989 (0.63) | 0.9996 | 0.8322 | −1.260 (−0.01) | 71.8156 (0.45) | 89.7277 (0.55) | 0.9994 | 0.8528 |
(3): (h,t) | 0.6278 (−0.01) | 76.4693 (0.45) | 102.8041 (0.60) | 0.9997 | 0.8886 | −0.877 (−0.01) | 68.7991 (0.43) | 91.9456 (0.57) | 0.9994 | 0.8997 |
Diameter | ||||||||||
(1): (t) | –0.0823 (−11.44) | 0.8511 (21.83) | 1.1336 (32.29) | 0.5019 | 0.0963 | −0.1291 (−10.72) | 0.8903 (23.79) | 1.0774 (31.52) | 0.2631 | 0.1149 |
(5): (N,h,t) | –0.0070 (−5.05) | 0.6436 (17.76) | 0.8485 (24.63) | 0.7210 | 0.8501 | −0.0202 (−5.26) | 0.7311 (18.86) | 0.9636 (25.63) | 0.4106 | 0.7821 |
(3): (N,t) | 0.0067 (−8.50) | 0.8299 (23.61) | 1.1200 (33.33) | 0.5138 | 0.8901 | −0.0255 (−7.84) | 0.8742 (22.96) | 1.0721 (29.81) | 0.2704 | 0.7530 |
(3): (h,t) | –0.0454 (−5.33) | 0.6726 (18.19) | 0.8871 (25.32) | 0.6950 | 0.2402 | −0.0552 (−5.68) | 0.7577 (19.57) | 1.0122 (27.08) | 0.3497 | 0.4718 |
Height | ||||||||||
(1): (t) | 0.0012 (−2.93) | 0.4065 (12.53) | 0.5483 (18.03) | 0.7578 | 0.9580 | 0.0003 (−2.09) | 0.3971 (10.96) | 0.5182 (15.30) | 0.6796 | 0.9937 |
(5): (N,d,t) | 0.0008 (−1.47) | 0.3224 (9.68) | 0.4214 (13.07) | 0.8570 | 0.9639 | −0.00002 (−1.25) | 0.3332 (8.99) | 0.4495 (12.07) | 0.7588 | 0.9994 |
(3): (N,t) | 0.0007 (−2.77) | 0.4050 (12.47) | 0.5451 (17.85) | 0.7607 | 0.9751 | −0.0005 (−2.02) | 0.3939 (10.87) | 0.5165 (15.16) | 0.6816 | 0.9900 |
(3): (d,t) | 0.0010 (−1.19) | 0.3306 (9.94) | 0.4298 (13.38) | 0.8512 | 0.9584 | 0.0003 (−1.07) | 0.3468 (9.30) | 0.4662 (12.27) | 0.7406 | 0.9937 |
Model | B (%) | AB (%) | RMSE (%) | R2 | T |
---|---|---|---|---|---|
Mixed | 0.1587 (1.10) | 1.1292 (5.16) | 1.6082 (8.81) | 0.9451 | 0.5909 |
Mixed-stationary | 0.1587 (1.10) | 1.1292 (5.16) | 1.6082 (8.81) | 0.9451 | 0.5909 |
Model | B (%) | AB (%) | RMSE (%) | R2 | T |
---|---|---|---|---|---|
Mixed | 0.7361 (1.79) | 4.8464 (6.40) | 7.8747 (9.80) | 0.9979 | 0.5204 |
Mixed-stationary | 0.7361 (1.79) | 4.8464 (6.40) | 7.8747 (9.80) | 0.9979 | 0.5204 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupšys, P.; Narmontas, M.; Petrauskas, E. A Multivariate Hybrid Stochastic Differential Equation Model for Whole-Stand Dynamics. Mathematics 2020, 8, 2230. https://doi.org/10.3390/math8122230
Rupšys P, Narmontas M, Petrauskas E. A Multivariate Hybrid Stochastic Differential Equation Model for Whole-Stand Dynamics. Mathematics. 2020; 8(12):2230. https://doi.org/10.3390/math8122230
Chicago/Turabian StyleRupšys, Petras, Martynas Narmontas, and Edmundas Petrauskas. 2020. "A Multivariate Hybrid Stochastic Differential Equation Model for Whole-Stand Dynamics" Mathematics 8, no. 12: 2230. https://doi.org/10.3390/math8122230
APA StyleRupšys, P., Narmontas, M., & Petrauskas, E. (2020). A Multivariate Hybrid Stochastic Differential Equation Model for Whole-Stand Dynamics. Mathematics, 8(12), 2230. https://doi.org/10.3390/math8122230