On a Certain Generalized Functional Equation for Set-Valued Functions
Abstract
:1. Introduction
2. Preliminary Results
- 1.
- for all , if and ; then, ;
- 2.
- if d is invariant, , and is a sequence of real numbers converging to , then .
3. Compact Topological Group Case for Set-Valued Functions
4. Further Results
5. Example
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jordan, P.; von Neumann, J. On inner produsts in linear, metric spaces. Ann. Math. 1935, 36, 719–723. [Google Scholar] [CrossRef]
- Fréchet, M. Sur la définition axiomatique d’une classe d’eapaces vectoriels distanciés applicables vectoriellement sur l’espace de Hilbert. Ann. Math. 1935, 36, 705–718. [Google Scholar] [CrossRef]
- Drygas, H. Quasi-inner products and their applications. In Advances in Multivariate Statistical Analysis, D; Gupta, A.K., Ed.; Reidel Publishing Co.: Dordrecht, The Netherlands, 1987; pp. 13–30. [Google Scholar]
- Kannappan, P. Functional Equations and Inequalities with Applications; Springer: New York, NY, USA, 2009. [Google Scholar]
- Aczel, J.; Dhombres, J. Functional Equations in Several Variables; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Sikorska, J. On a Method of Solving Some Functional Equations for Set-Valued Functions. Set Valued Var. Anal. 2019, 27, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Rådström, H. An embedding theorem for spaces of convex set. Proc. Amer. Math. Soc. 1952, 3, 165–169. [Google Scholar] [CrossRef]
- Debreu, G.; Schmeidler, D. The Radon-Nikodym derivative of a correspondence. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1972; Volume 2, pp. 41–56. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazaykin, Y.; Bednařík, D.; Borůvková, V.; Zuščák, T. On a Certain Generalized Functional Equation for Set-Valued Functions. Mathematics 2020, 8, 2243. https://doi.org/10.3390/math8122243
Bazaykin Y, Bednařík D, Borůvková V, Zuščák T. On a Certain Generalized Functional Equation for Set-Valued Functions. Mathematics. 2020; 8(12):2243. https://doi.org/10.3390/math8122243
Chicago/Turabian StyleBazaykin, Yaroslav, Dušan Bednařík, Veronika Borůvková, and Tomáš Zuščák. 2020. "On a Certain Generalized Functional Equation for Set-Valued Functions" Mathematics 8, no. 12: 2243. https://doi.org/10.3390/math8122243
APA StyleBazaykin, Y., Bednařík, D., Borůvková, V., & Zuščák, T. (2020). On a Certain Generalized Functional Equation for Set-Valued Functions. Mathematics, 8(12), 2243. https://doi.org/10.3390/math8122243