Inequalities for the Casorati Curvature of Statistical Manifolds in Holomorphic Statistical Manifolds of Constant Holomorphic Curvature
Abstract
:1. Introduction
2. Preliminaries
- 1.
- ;
- 2.
- , , is also a statistical manifold;
- 3.
- always has a dual connection satisfying
- is a statistical structure on ; and
- is a -parallel 2-form on ,
3. Main Inequalities
- (i)
- (ii)
4. An Example
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, B.Y. Riemannian submanifolds. In Handbook of Differential Geometry; Dillen, F., Verstraelen, L., Eds.; Elsevier North-Holland: Amsterdam, The Netherlands, 2000; Volume 1, pp. 187–418. [Google Scholar]
- Chen, B.Y. Strings of Riemannian invariants, inequalities, ideal immersions and their applications. In Proceedings of the Third Pacific Rim Geometry Conference, Seoul, South Korea, 4–7 December 1996; International Press: Cambridge, UK, 1998; pp. 7–60. [Google Scholar]
- Chen, B.Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math. 1993, 60, 569–578. [Google Scholar] [CrossRef]
- Chen, B.Y. A general inequality for submanifolds in complex-space-forms and its applications. Arch. Math. 1996, 67, 519–528. [Google Scholar] [CrossRef]
- Oiagă, A.; Mihai, I. B.Y. Chen inequalities for slant submanifolds in complex space forms. Demonstr. Math. 1999, 32, 835–846. [Google Scholar] [CrossRef] [Green Version]
- Oprea, T. Chen’s inequality in Lagrangian case. Colloq. Math. 2007, 108, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.Y. Pseudo-Riemannian Geometry, δ-Invariants and Applications; World Scientific: Singapore, 2011. [Google Scholar]
- Chen, B.Y.; Dillen, F.; der Veken, J.V.; Vrancken, L. Classification of δ(2,n − 2)-ideal Lagrangian submanifolds in n-dimensional complex space forms. J. Math. Anal. Appl. 2018, 458, 1456–1485. [Google Scholar] [CrossRef]
- Decu, S.; Haesen, S.; Verstraelen, L. Optimal inequalities involving Casorati curvatures. Bull. Transilv. Univ. Braşov Ser. B Suppl. 2007, 14, 85–93. [Google Scholar]
- Decu, S.; Haesen, S.; Verstraelen, L. Optimal inequalities characterising quasi-umbilical submanifolds. J. Inequal. Pure Appl. Math. 2008, 9. [Google Scholar]
- Casorati, F. Mesure de la courbure des surfaces suivant l’idée commune. Acta Math. 1890, 14, 95–110. [Google Scholar] [CrossRef]
- Koenderink, J.J. Shadows of Shapes; De Clootcrans Press: Utrecht, The Netherlands, 2012. [Google Scholar]
- Verstraelen, P. A geometrical description of visual perception-The Leuven Café Erasmus model and Bristol Café Wall illusion. Kragujevac J. Math. 2005, 28, 7–17. [Google Scholar]
- Haesen, S.; Kowalczyk, D.; Verstraelen, L. On the extrinsic principal directions of Riemannian submanifolds. Note Mat. 2009, 29, 41–53. [Google Scholar]
- Decu, S.; Verstraelen, L. A note of the isotropical geometry of production surfaces. Kragujevac J. Math. 2013, 37, 217–220. [Google Scholar]
- He, G.; Liu, H.; Zhang, L. Optimal inequalities for the Casorati curvatures of submanifolds in generalized space forms endowed with semi-symmetric non-metric connections. Symmetry 2016, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.W.; Yoon, D.W.; Lee, J.W. Optimal inequalities for the Casorati curvatures of submanifolds of real space forms endowed with semi-symmetric metric connections. J. Inequal. Appl. 2014, 2014, 327. [Google Scholar] [CrossRef] [Green Version]
- Park, K. Inequalities for the Casorati curvatures of real hypersurfaces in some Grassmannians. Taiwan. J. Math. 2018, 22, 63–77. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L. Casorati Inequalities for Submanifolds in a Riemannian Manifold of Quasi-Constant Curvature with a Semi-Symmetric Metric Connection. J. Inequal. Appl. 2016, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Zhang, L. Inequalities for Casorati curvatures of submanifolds in real space forms. Adv. Geom. 2016, 16, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Lee, J.; Vîlcu, G.E. Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms. Adv. Geom. 2017, 17, 355–362. [Google Scholar] [CrossRef]
- Vîlcu, G. An optimal inequality for Lagrangian submanifolds in complex space forms involving Casorati curvature. J. Math. Anal. Appl. 2018, 465, 1209–1222. [Google Scholar] [CrossRef]
- Aquib, M.; Lee, J.; Vîlcu, G.E.; Yoon, D. Classification of Casorati ideal Lagrangian submanifolds in complex space forms. Differ. Geom. Appl. 2019, 63, 30–49. [Google Scholar] [CrossRef]
- Suceavă, B.; Vajiac, M. Estimates of B.-Y. Chen’s -Invariant in Terms of Casorati Curvature and Mean Curvature for Strictly Convex Euclidean Hypersurfaces. Int. Electron. J. Geom. 2019, 12, 26–31. [Google Scholar]
- Brubaker, N.; Suceavă, B. A Geometric Interpretation of Cauchy-Schwarz inequality in terms of Casorati Curvature. Int. Electron. J. Geom. 2018, 11, 48–51. [Google Scholar]
- Amari, S. Differential-Geometrical Methods in Statistics; Lecture Notes in Statistics; Berger, J., Fienberg, S., Gani, J., Krickeberg, K., Olkin, I., Singer, B., Eds.; Springer: Berlin, Germany, 1985; Volume 28. [Google Scholar]
- Boyom, N. Foliations-Webs-Hessian Geometry-Information Geometry-Entropy and Cohomology. Entropy 2016, 18, 433. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Wang, X.; Moran, B. Optimal Nonlinear Estimation in Statistical Manifolds with Application to Sensor Network Localization. Entropy 2017, 19, 308. [Google Scholar] [CrossRef]
- Zhang, J. Nonparametric Information Geometry: From Divergence Function to Referential-Representational Biduality on Statistical Manifolds. Entropy 2013, 15, 5384–5418. [Google Scholar] [CrossRef] [Green Version]
- Cuingnet, R.; Glaunès, J.; Chupin, M.; Benali, H.; Colliot, O. Anatomical regularization on Statistical Manifolds for the Classification of Patients with Alzheimer’s Disease. In Machine Learning in Medical Imaging. MLMI 2011; Suzuki, K., Wang, F., Shen, D., Yan, P., Eds.; Lecture Notes in Comput. Sci.; Springer: Berlin/Heidelber, Germany, 2011; Volume 7009. [Google Scholar]
- Aydin, M.; Mihai, A.; Mihai, I. Some inequalities on submanifolds in statistical manifolds of constant curvature. Filomat 2015, 29, 465–477. [Google Scholar] [CrossRef]
- Aydin, M.; Mihai, A.; Mihai, I. Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature. Bull. Math. Sci. 2017, 7, 155–166. [Google Scholar] [CrossRef]
- Lee, C.; Lee, J. Inequalities on Sasakian Statistical Manifolds in Terms of Casorati Curvatures. Mathematics 2018, 6, 259. [Google Scholar] [CrossRef] [Green Version]
- Aquib, M.; Shahid, M. Generalized normalized δ-Casorati curvature for statistical submanifolds in quaternion Kaehler-like statistical space forms. J. Geom. 2018, 109, 13. [Google Scholar] [CrossRef]
- Vîlcu, A.; Vîlcu, G. Statistical manifolds with almost quaternionic structures and quaternionic Kaehler-like statistical submersions. Entropy 2015, 17, 6213–6228. [Google Scholar] [CrossRef] [Green Version]
- Aytimur, H.; Kon, M.; Mihai, A.; Ozgur, C.; Takano, K. Chen Inequalities for Statistical Submanifolds of Kaehler-Like Statistical Manifolds. Mathematics 2019, 7, 1202. [Google Scholar] [CrossRef] [Green Version]
- Aquib, M.; Boyom, M.; Shahid, M.; Vîlcu, G. The First Fundamental Equation and Generalized Wintgen-Type Inequalities for Submanifolds in Generalized Space Forms. Mathematics 2019, 7, 1151. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.Y.; Mihai, A.; Mihai, I. A Chen First Inequality for Statistical Submanifolds in Hessian Manifolds of Constant Hessian Curvatures. Results Math. 2019, 74, 165. [Google Scholar] [CrossRef]
- Siddiqui, A.; Chen, B.Y.; Bahadir, O. Statistical Solitons and Inequalities for Statistical Warped Product Submanifolds. Mathematics 2019, 7, 797. [Google Scholar] [CrossRef] [Green Version]
- Furuhata, H.; Hasegawa, I. Submanifold theory in holomorphic statistical manifolds. In Geometry of Cauchy-Riemann Submanifolds; Dragomir, S., Shahid, M.H., Al-Solamy, F.R., Eds.; Springer Science+Business Media: Singapore, 2016; pp. 179–214. [Google Scholar]
- Vos, P. Fundamental equations for statistical submanifolds with applications to the Barlett correction. Ann. Inst. Statist. Math. 1989, 41, 429–450. [Google Scholar] [CrossRef]
- Furuhata, H.; Hasegawa, I.; Okuyama, Y.; Sato, K. Kenmotsu statistical manifolds and warped product. J. Geom. 2017, 108, 1175–1191. [Google Scholar] [CrossRef]
- Furuhata, H. Hypersurfaces in statistical manifolds. Differ. Geom. Appl. 2009, 27, 420–429. [Google Scholar] [CrossRef] [Green Version]
- Oprea, T. Constrained Extremum Problems in Riemannian Geometry; University of Bucharest Publishing House: Bucharest, Romania, 2006. [Google Scholar]
- Oproiu, V. Some new geometric structures on the tangent bundle. Publ. Math. Debrecen 1999, 55, 261–281. [Google Scholar]
- Milijevic, M. Totally real statistical submanifolds. Interdiscip. Inform. Sci. 2015, 21, 87–96. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Decu, S.; Haesen, S.; Verstraelen, L. Inequalities for the Casorati Curvature of Statistical Manifolds in Holomorphic Statistical Manifolds of Constant Holomorphic Curvature. Mathematics 2020, 8, 251. https://doi.org/10.3390/math8020251
Decu S, Haesen S, Verstraelen L. Inequalities for the Casorati Curvature of Statistical Manifolds in Holomorphic Statistical Manifolds of Constant Holomorphic Curvature. Mathematics. 2020; 8(2):251. https://doi.org/10.3390/math8020251
Chicago/Turabian StyleDecu, Simona, Stefan Haesen, and Leopold Verstraelen. 2020. "Inequalities for the Casorati Curvature of Statistical Manifolds in Holomorphic Statistical Manifolds of Constant Holomorphic Curvature" Mathematics 8, no. 2: 251. https://doi.org/10.3390/math8020251
APA StyleDecu, S., Haesen, S., & Verstraelen, L. (2020). Inequalities for the Casorati Curvature of Statistical Manifolds in Holomorphic Statistical Manifolds of Constant Holomorphic Curvature. Mathematics, 8(2), 251. https://doi.org/10.3390/math8020251