Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors
Abstract
:1. Introduction
2. Preliminaries
3. Bounds for the Minimum -Eigenvalue of Elasticity -Tensors
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chang, K.; Qi, L.; Zhou, G. Singular values of a real rectangular tensor. J. Math. Anal. Appl. 2010, 370, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Qi, L.; Wei, Y. M-tensors and nonsingular M-tensors. Linear Algebra Appl. 2013, 439, 3264–3278. [Google Scholar] [CrossRef]
- Huang, Z.; Qi, L. Positive definiteness of paired symmetric tensors and elasticity tensors. J. Comput. Appl. Math. 2018, 388, 22–43. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, Y.; Kong, X. New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 2014, 21, 39–50. [Google Scholar] [CrossRef]
- Qi, L.; Luo, Z. Tensor Analysis: Spectral Theory and Special Tensors; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
- Yang, Y.; Yang, Q. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM. J. Matrix Anal. Appl. 2011, 32, 1236–1250. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, G.; Caccetta, L. Z-eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst. Ser. B 2017, 22, 187–198. [Google Scholar] [CrossRef] [Green Version]
- Bloy, L.; Verma, R. On Computing the Underlying Fiber Directions From the Diffusion Orientation Distribution Function in Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–8. [Google Scholar]
- Li, G.; Qi, L.; Yu, G. The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 2013, 20, 1001–1029. [Google Scholar] [CrossRef]
- Gao, L.; Luo, F.; Yan, Z. Finite-time annular domain stability of impulsive switched systems: Mode-dependent parameter approach. Int. J. Control 2019, 92, 1381–1392. [Google Scholar] [CrossRef]
- Gao, L.; Cao, Z.; Wang, G. Almost sure stability of discrete-time nonlinear Markovian jump delayed systems with impulsive signals. Nonlinear Anal-Hybri. 2019, 34, 248–263. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, M.; Yao, X. Stochastic input-to-state stability for impulsive switched stochastic nonlinear systems with multiple jumps. Int. J. Syst. Sci. 2019, 50, 1860–1871. [Google Scholar] [CrossRef]
- Ni, Q.; Qi, L.; Wang, F. An eigenvalue method for testing the positive definiteness of a multivariate form. IEEE. Trans. Automat. Contr. 2008, 53, 1096–1107. [Google Scholar] [CrossRef]
- Love, A. A Treatise on the Mathematical Theory of Elasticity; Cambridge University Press: Cambridge, UK, 1927. [Google Scholar]
- Annin, B.D.; Ostrosablin, N.I. Anisotropy of elastic properties of materials. J. Appl. Mech. Tech. Phys. 2008, 49, 998–1014. [Google Scholar] [CrossRef]
- Ostrosablin, N.I. On the structure of the elastic tensor and the classification of anisotropic materials. J. Appl. Mech. Tech. Phys. 1986, 27, 600–607. [Google Scholar] [CrossRef]
- Ostrosablin, N.I. Functional relation between two symmetric seconde-rank tensors. J. Appl. Mech. Tech. Phys. 2007, 48, 734–736. [Google Scholar] [CrossRef]
- Nikabadze, M.U. Eigenvalue problem for tensors of even rank and its applications in mechanics. J. Math. Sci. 2017, 221, 174–204. [Google Scholar] [CrossRef]
- Rykhlevskii, Y. On Hooke’s law. Prikl. Mat. Mekh. 1984, 48, 420–435. [Google Scholar]
- Vekua, I.N. Fundamentals of Tensor Analysis and Theory of Covariants; Nauka: Moscow, Russia, 1978. [Google Scholar]
- Zubov, L.; Rudev, A. On necessary and sufficient conditions of strong ellipticity of equilibrium equations for certain classes of anisotropic linearly elastic materials. Z. Angew. Math. Mech. 2016, 96, 1096–1102. [Google Scholar] [CrossRef]
- Nikabadze, M.U. Topics on tensor calculus with applications to mechanics. J. Math. Sci. 2017, 225, 1–194. [Google Scholar] [CrossRef]
- Nikabadze, M.U. Eigenvalue Problems of a Tensor and a Tensor-Block Matrix (TBM) of Any Even Rank with Some Applications. Generalized Continua as Models for Classical and Advanced Materials; Springer: Cham, Switzerland, 2016; pp. 279–317. [Google Scholar]
- Ding, W.; Liu, J.; Qi, L.; Yan, H. Elasticity M-tensors and the strong ellipticity condition. arXiv 2017, arXiv:1705.09911v2. [Google Scholar] [CrossRef]
- Han, D.; Dai, H.; Qi, Q. Conditions for strong ellipticity of anisotropic elastic materials. J. Elasticity 2009, 97, 1–13. [Google Scholar] [CrossRef]
- He, J.; Xu, G.; Liu, Y. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. J. Ind. Manag. Optim. 2019, 13, 1. [Google Scholar] [CrossRef]
- Qi, L.; Dai, H.; Han, D. Conditions for strong ellipticity and M-eigenvalues. Front. Math. China 2009, 4, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wang, Y.; Liu, L. Bound estimations on the eigenvalues for Fan Product of M-tensors. Taiwan. J. Math. 2019, 23, 751–766. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, K.; Sun, H. Criteria for strong H-tensors. Front. Math. China 2016, 11, 577–592. [Google Scholar] [CrossRef]
- Zhang, L.; Qi, L.; Zhou, G. M-tensors and some applications. SIAM. J. Matrix Anal. Appl. 2014, 32, 437–452. [Google Scholar] [CrossRef]
- Zhao, J.; Li, C. Singular value inclusion sets for rectangular tensors. Linear Multilinear Algebra 2018, 66, 1333–1350. [Google Scholar] [CrossRef]
- Bozorgmanesh, H.; Hajarian, M. Solving tensor E-eigenvalue problem faster. Appl. Math. Lett. 2020, 100, 106020. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, L.; Zhang, X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numer. Linear Algebra Appl. 2009, 16, 589–601. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Wang, Y. Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors. Linear Multilinear Algebra 2019. [Google Scholar] [CrossRef]
- Zhou, G.; Wang, G.; Qi, L.; Alqahtani, A. A fast algorithm for the spectral radii of weakly reducible nonnegative tensors. Numer. Linear Algebra Appl. 2018, 25, e2134. [Google Scholar] [CrossRef]
- He, J.; Liu, Y.; Xu, G. New sufficient condition for the positive definiteness of fourth order tensors. Mathematics 2018, 6, 303. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, Y. An eigenvalue localization set for tensors with applications to determine the positive (semi-) deffiniteness of tensors. Linear Multilinear Algebr. 2016, 64, 587–601. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, G.; Caccetta, L. Sharp Brauer-type eigenvalue inclusion theorems for tensors. Pac. J. Optim. 2018, 14, 227–244. [Google Scholar]
- Wang, G.; Wang, Y.; Zhang, Y. Brauer-type upper bounds for Z-spectral radius of weakly symmetric nonnegative tensors. J. Math. Inequal. 2019, 13, 1105–1116. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Sun, L.; Liu, L. M-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors. Complexity 2020, 2020, 2474278. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, Y.; Wang, G. Exclusion sets in the S-type eigenvalue localization sets for tensors. Open Math. 2019, 17, 1136–1146. [Google Scholar] [CrossRef]
- Cui, J.; Peng, G.; Lu, Q.; Huang, Z. Several new estimates of the minimum H-eigenvalue for nonsingular M-tensors. Bull. Malays. Math. Sci. Soc. 2019, 42, 1213–1236. [Google Scholar] [CrossRef]
- Zhao, J.; Sang, C. New bounds for the minimum eigenvalue of M-tensors. Open Math. 2017, 2017, 296–303. [Google Scholar] [CrossRef]
References | Interval |
---|---|
Lemma 2 and Theorem 3.1 of [26] | |
Lemma 2 and Theorem 3.2 of [26] | |
Theorem 1 and Theorem 2 | |
Theorem 1 and Theorem 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Sun, L.; Wang, G. Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors. Mathematics 2020, 8, 250. https://doi.org/10.3390/math8020250
Zhang Y, Sun L, Wang G. Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors. Mathematics. 2020; 8(2):250. https://doi.org/10.3390/math8020250
Chicago/Turabian StyleZhang, Ying, Linxuan Sun, and Gang Wang. 2020. "Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors" Mathematics 8, no. 2: 250. https://doi.org/10.3390/math8020250
APA StyleZhang, Y., Sun, L., & Wang, G. (2020). Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors. Mathematics, 8(2), 250. https://doi.org/10.3390/math8020250