Next Article in Journal
Inequalities for the Casorati Curvature of Statistical Manifolds in Holomorphic Statistical Manifolds of Constant Holomorphic Curvature
Previous Article in Journal
Energetic-Property-Preserving Numerical Schemes for Coupled Natural Systems
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors

1
School of Basic Teaching, Shandong Water Conservancy Vocational College, Rizhao 276800, China
2
School of Management Science, Qufu Normal University, Rizhao 276800, China
*
Author to whom correspondence should be addressed.
Mathematics 2020, 8(2), 250; https://doi.org/10.3390/math8020250
Submission received: 28 November 2019 / Revised: 9 February 2020 / Accepted: 10 February 2020 / Published: 14 February 2020
(This article belongs to the Section Mathematics and Computer Science)

Abstract

:
The M-eigenvalue of elasticity M-tensors play important roles in nonlinear elastic material analysis. In this paper, we establish an upper bound and two sharp lower bounds for the minimum M-eigenvalue of elasticity M-tensors without irreducible conditions, which improve some existing results. Numerical examples are proposed to verify the efficiency of the obtained results.

1. Introduction

Tensor eigenvalue problems play an important role in numerical multilinear algebra [1,2,3,4,5,6,7], and they have a wide range in medical resonance [8], imaging spectral hypergraph theory [9], automatical control [10,11,12,13]. Particularly, the eigenvalue problem of the fourth-order elastic modulus tensor was dealt with by Love for the isotropic tensor [14] and for the anisotropic tensor [15,16,17,18,19,20,21]. A fourth-order real tensor A = ( a i j k l ) is called a partially symmetric tensor, denoted by A = ( a i j k l ) E 4 , n , if
a i j k l = a j i k l = a i j l k , i , j , k , l N = { 1 , 2 , , n } .
A fourth-order partially symmetric tensor is useful in nonlinear elastic material analysis [3,16,17,18,19,20,21,22,23,24,25,26,27]. Ostrosablin [16] first constructed a complete system of eigentensors for the fourth rank tensor of elastic modulus, and Nikabadze [18] generalized these results and constructed a full system of eigentensors for a tensor of any even rank, as well as a complete system of eigentensor-columns for a tensor-block matrix of any even rank [22,23]. For example, a fourth-order partially symmetric tensor with n = 2 or 3 , called the elasticity tensor, can be used in the two/three-dimensional field equations for a homogeneous compressible nonlinearly elastic material for static problems without body forces [27]. To identify the strong ellipticity in elastic mechanics, Han et al. [25] introduced M-eigenvalues of a fourth-order partially symmetric tensor. For λ R , x , y R n , if
A · x y 2 = λ x A x 2 y · = λ y x x = 1 y y = 1 ,
where ( A · x y 2 ) i = j , k , l [ n ] a i j k l x j y k y l , ( A x 2 y · ) l = i , j , k [ n ] a i j k l x i x j y k , then the scalar λ is called an M-eigenvalue of the tensor A , and x and y are called left and right M-eigenvectors of A associated with the M-eigenvalue. Then the M-spectral radius of A is denoted by
ρ M ( A ) = max { | λ | : λ σ M ( A ) } .
Recently, tensors with special structures, such as nonnegative tensors, M-tensors and H-tensors, are becoming the focus in recent research [2,24,28,29,30,31]. Some effective algorithms for finding eigenvalue and the corresponding eigenvector have been implemented [1,24,32,33,34,35]. For example, Bozorgmanesh et al. [32] propose an algorithm that can solve E-eigenvalue problem faster. However, it is very difficult for these algorithms to compute all M-eigenvalues or E-eigenvalues. Thus, some researchers turned to investigating eigenvalue inclusion sets [4,7,36,37,38,39,40,41]. Particularly, some bounds for the minimum H-eigenvalue of nonsingular M-tensors have been proposed [2,28,30,42,43]. Ding et al. [24] introduced a structured partially symmetric tensor named elasticity M-tensors and established important properties of elasticity M-tensors and nonsingular elasticity M-tensors.
Definition 1.
A E 4 , n is called an elasticity M-tensor if there exist a nonnegative tensor B E 4 , n and a real number s ρ M ( B ) such that
A = s I M B ,
where ρ M ( B ) is the M-spectral radius and I M = ( e i j k l ) E 4 , n is called elasticity identity tensor with its entries
e i j k l = 1 , i f i = j a n d k = l 0 , o t h e r w i s e ,
Furthermore, if s > ρ ( B ) , then we call A a nonsingular elasticity M-tensor.
Based on structural properties of elasticity M-tensors, He et al. [26] proposed some bounds for the minimum M-eigenvalue under irreducible conditions. However, some of information eigenvectors x on elasticity M-tensors is not fully mined, such as max i , j N , i j | x i | | x j | 1 2 . Meanwhile, irreducibility is a relatively strict condition for elasticity M-tensor. Inspired by these observations, we want to present sharp bounds for the minimum M-eigenvalue of elasticity M-tensors by describing eigenvectors precisely without irreducible conditions, which improve existing results in [26].
This paper is organized as follows. In Section 2, some preliminary results are recalled. In Section 3, we establish an upper bound and two sharp lower bounds for the minimum M-eigenvalue of elasticity M-tensors. Numerical examples are proposed to verify the efficiency of the obtained results.

2. Preliminaries

In this section, we firstly introduce some definitions and important properties of elasticity M-tensors [24,26,27].
Definition 2.
Let A = ( a i 1 i 2 i m ) R [ m , n ] be a square tensor, then A = ( a i 1 i 2 i m ) is called reducible if there exists a nonempty proper index subset J { 1 , 2 , , n } such that a i 1 i 2 i m = 0 , i 1 J , i 2 , , i m J . If A is not reducible, then A is irreducible.
Lemma 1
(Theorem 1 of [27]). M-eigenvalues always exist. If x and y are left and right M-eigenvectors of A , associated with an M-eigenvalue λ, then then λ = A x 2 y 2 .
Lemma 2
(Lemma 2.3 of [26]). Let A = ( a i j k l ) E 4 , n be an irreducible elasticity tensor and τ M ( A ) be the minimal M-eigenvalues of A , then
τ M ( A ) min i , l N { a i i l l } .
Lemma 3
(Lemma 2.3 of [26]). Let A = ( a i j k l ) E 4 , n be an irreducible and elasticity M-tensors and τ M ( A ) be the minimal M-eigenvalue of A . Then τ M ( A ) 0 is an M-eigenvalue of A with positive eigenvectors.
Lemma 4
(Theorem 4.1 of [24]). The M-spectral radius of any nonnegative tensor in E 4 , n is exactly its greatest M-eigenvalue. Furthermore, there is a pair of nonnegative M-eigenvectors corresponding to the M-spectral radius.
In the following, we characterize M-eigenvectors of elasticity M-tensors without irreducibility conditions.
Lemma 5.
Let A = ( a i j k l ) E 4 , n be a elasticity M-tensor and τ M ( A ) be the minimal M-eigenvalue. Then, there is a nonnegative M-eigenvector corresponding to τ M ( A ) 0 .
Proof. 
Since A is a elasticity M-tensor, there exist a nonnegative tensor B E 4 , n and a real number c ρ M ( B ) such that
A = c I M B ,
where ρ M ( B ) is the greatest M-eigenvalue of B with nonnegative eigenvectors by Theorem 4.1 in [24]. Setting τ M ( A ) = c ρ M ( B ) , we have τ M ( A ) 0 . It follows from Proposition 2.2 in [24] that τ M ( A ) and ρ M ( B ) have the same eigenvectors. It follows from Lemma 4 that there exists a nonnegative M-eigenvector corresponding to τ M ( A ) 0 . Thus, the conclusion follows. ☐

3. Bounds for the Minimum M -Eigenvalue of Elasticity M -Tensors

In this section, we establish sharp bounds for τ M ( A ) . We begin our work by collecting the information of max i , j N , i j x i 2 x j 2 .
Lemma 6.
For any x R n , if
x 1 2 + x 2 2 + + x n 2 = 1 ,
then
max i , j N , i j x i 2 x j 2 1 4 .
Further, max i , j N , i j x i x j 1 2 for all x i , x j 0 .
Proof. 
Define
f ( x 1 , , x n ) = x i 2 x j 2 λ ( x 1 2 + x 2 2 + + x n 2 1 ) ,
where λ denotes Lagrange multiplier. For all i j , deriving the above equation x i and x j respectively, we get
2 x j 2 x i = 2 λ x i , 2 x i 2 x j = 2 λ x j .
Hence, we obtain x i 2 = x j 2 , λ = 1 2 . Particularly, set
x i = ± x j = ± 2 2 , x n = 0 , n i , j
with x 1 2 + x 2 2 + + x n 2 = 1 . So,
max i , j N , i j x i 2 x j 2 1 4 .
Further,
max i , j N , i j x i x j 1 2 , x i , x j 0 .
 ☐
Remark 1.
For the right M-eigenvector y R n , we can establish similar conclusions that max i , j N , i j y i y j 1 2 for all y i , y j 0 .
Without irreducible conditions, we propose a sharp upper bound for the minimum M-eigenvalue of elasticity M-tensors.
Theorem 1.
Let A = ( a i j k l ) E 4 , n be a elasticity M-tensor. Then,
τ M ( A ) min { min i , l N a i i l l , i N S i ( A ) n 2 } ,
where S i ( A ) = j , k , l N a i j k l .
Proof. 
Let τ M ( A ) be the minimum M-eigenvalue of A . It follows Lemma 1 that
τ M ( A ) = min x , y { f A ( x , y ) = A x 2 y 2 : x x = 1 a n d y y = 1 } .
Setting a feasible solution of (3)
( x ¯ , y ¯ ) = ( 1 n , , 1 n , 1 n , , 1 n ) ,
we obtain
τ M ( A ) f A ( x ¯ , y ¯ ) = i , j N k , l N a i j k l n 2 = i [ n ] S i ( A ) n 2 .
From Lemma 2 and (4), it holds that
τ M ( A ) min { min i , l N a i i l l , i N S i ( A ) n 2 } .
 ☐
Next, we propose sharp lower bounds for the minimum M-eigenvalue of elasticity M-tensors.
Theorem 2.
Let A = ( a i j k l ) E 4 , n be a elasticity M-tensor. Then
τ M ( A ) max { min i N { α i G i ( A ) } , min l N { β l M l ( A ) } }
where
G i ( A ) = ω i ( A ) 1 2 r i ( A ) , α i = min l N { a i i l l } , ω i ( A ) = max l N ( α i a i i l l j = 1 , j i n a i j l l ) , r i ( A ) = j , k , l = 1 , k l n a i j k l ,
M l ( A ) = m l ( A ) 1 2 c l ( A ) , β l = min i N { a i i l l } , m l ( A ) = max i N ( β l a i i l l k = 1 , k l n a i i k l ) , c l ( A ) = i , j , k = 1 , i j n a i j k l .
Proof. 
Let τ M ( A ) be the minimum M-eigenvalue of A . By Lemma 5, there exist nonnegative left and right M-eigenvectors ( x , y ) corresponding to τ M ( A ) . On one hand, setting x p = max k N { x k } , by x x = 1 , one has 0 < | x p | 1 . Recalling the p-th equation of τ M ( A ) x = A x y 2 , we obtain
( ( a p p 11 y 1 2 + + a p p n n y n 2 ) τ ( A ) ) x p = j , k , l = 1 , k l n a p j k l x j y k y l j , l = 1 , j p n a p j l l x j y l 2 ,
Setting α p = min l N { a p p l l } , by (5) and Lemma 6, one has
( α p τ M ( A ) ) x p = l = 1 , j = p n ( α p a p p l l ) y l 2 x p j , k , l = 1 , k l n a p j k l x j y k y l j , l = 1 , j p n a p j l l x j y l 2 l = 1 , j = p n ( α p a p p l l ) y l 2 x p j , k , l = 1 , k l n a p j k l x p y k y l j , l = 1 , j p n a p j l l x p y l 2 = l = 1 n ( α p a p p l l j = 1 , j p n a p j l l ) y l 2 x p j , k , l = 1 , k l n a p j k l x p y k y l max l N ( α p a p p l l j = 1 , j p n a p j l l ) x p 1 2 j , k , l = 1 , k l n a p j k l x p .
It follows from (6) and definition of ω p that
( α p τ M ( A ) ) x p ( ω p ( A ) 1 2 r p ( A ) ) x p ,
which implies
τ M ( A ) α p ω p ( A ) + 1 2 r p ( A ) .
On the other hand, setting y t = max k N { y k } , from the t-th equation of τ M ( A ) y = A x 2 y , we obtain
( ( a 11 t t y 1 2 + + a n n t t y n 2 ) τ ( A ) ) y t = i , j , k = 1 , i j n a i j k t x i x j y k i , k = 1 , k t n a i i k t x i 2 y k .
Letting β t = min i N { a i i t t } , by (8) and Lemma 6, we have
( β t τ M ( A ) ) y t = i = 1 , k = t n ( β t a i i t t ) x i 2 y t i , j , k = 1 , i j n a i j k t x i x j y k i , k = 1 , k t n a i i k t x i 2 y k i = 1 , k = t n ( β t a i i t t ) x i 2 y t i , k = 1 , k t n a i i k t y t x i 2 i , j , k = 1 , i j n a i j k t x i x j y t = l = 1 n ( β t a i i t t k = 1 , k t n a i i k t ) x i 2 y t i , j , k = 1 , i j n a i j k t x i x j y t max i N ( β t a i i t t k = 1 , k t n a i i k t ) y t 1 2 i , j , k = 1 , i j n a i j k t y t .
It follows from (9) and definition of m t that
( β t τ M ( A ) ) y t ( m t ( A ) 1 2 c t ( A ) ) y t ,
which shows
τ M ( A ) β t m t ( A ) + 1 2 c t ( A ) .
From (7) and (10), the result follows. ☐
Now, we are at a position to prove that the bound in Theorem 2 is tighter than that of Theorem 3.1 of [26].
Corollary 1.
Let A = ( a i j k l ) E 4 , n be a elasticity M-tensor. Then
max { min i N { α i G i ( A ) } , min l N { β l M l ( A ) } } max { min i N { α i R i ( A ) } , min l N { β l C l ( A ) } } .
Proof. 
On one hand, it follows from Theorem 3.1 of [26] that
α i R i ( A ) = α i γ i ( A ) r i ( A ) = α i max l N { j = 1 , j i n | a i j l l | } j , k , l = 1 , k l n | a i j k l | .
Since α i a i i l l 0 and j = 1 , j i n a i j l l 0 , we can verify
max l N { j = 1 , j i n | a i j l l | } max l N ( α i a i i l l j = 1 , j i n a i j l l ) , 1 2 j , k , l = 1 , k l n a i j k l j , k , l = 1 , k l n | a i j k l | ,
which shows
α i G i ( A ) α i R i ( A ) , i N .
On the other hand, it follows from Theorem 3.1 of [26] that
β l C l ( A ) = β l δ l ( A ) 1 2 c l ( A ) = β l max i N ( β l a i i l l k = 1 , k l n a i j l l ) + 1 2 i , j , k = 1 , i j n a i j k l .
Following the similar arguments in the proof of (11), we obtain
β l M l ( A ) β l C l ( A ) , l N .
It follows from (11) and (12) that
max { min i N { α i G i ( A ) } , min l N { β l M l ( A ) } } max { min i N { α i R i ( A ) } , min l N { β l C l ( A ) } } .
 ☐
Choosing x q as a component of x with the second largest modulus, we obtain another sharp lower bound for τ M ( A ) .
Theorem 3.
Let A = ( a i j k l ) E 4 , n be a elasticity M-tensor. Then
τ M ( A ) max { ϕ 1 ( A ) , ϕ 2 ( A ) } ,
where ϕ 1 ( A ) = min i , v N , v i { 1 2 { α i + 1 2 r i ( A ) + α v ω v i ( A ) Δ i , v 1 2 ( A ) } , α i + 1 2 r i ( A ) , α v ω v i ( A ) } , ϕ 2 ( A ) = min u , l N , u l { 1 2 { β l + 1 2 c l ( A ) + β u m u l ( A ) θ l , u 1 2 ( A ) } , β l + 1 2 c l ( A ) , β u m u l ( A ) } , Δ i , v ( A ) = ( α i + 1 2 r i ( A ) α v + ω v i ( A ) ) 2 + 4 ω i ( A ) ( γ v i ( A ) 1 2 r v ( A ) ) , θ l , u ( A ) = ( β l + 1 2 c l ( A ) β u + m u l ( A ) ) 2 + 4 m l ( A ) ( δ u l ( A ) 1 2 c u ( A ) ) , γ v i ( A ) = max l N ( a v i l l ) , ω v i ( A ) = max l N ( α v a v v l l j = 1 ; j v , i n a v j l l ) , δ u l ( A ) = max i N ( a i i l u ) , m u l ( A ) = max i N ( β u a i i u u k = 1 ; k u , l n a i i k l ) .
Proof. 
Let τ M ( A ) be the minimal M-eigenvalue of A . By Lemma 5, there exist nonnegative left and right M-eigenvectors ( x , y ) corresponding to τ M ( A ) . On one hand, set x p x q max k N , k p , q { x k } . By the p-th equation of τ M ( A ) x = A x y 2 , one has
( ( a p p 11 y 1 2 + + a p p n n y n 2 ) τ M ( A ) ) x p = j , k , l = 1 , k l n a p j k l x j y k y l j , l = 1 , j p n a p j l l x j y l 2 .
Setting α p = min l N { a p p l l } , from (13) and Lemma 6, we obtain
( α p τ M ( A ) ) x p = l = 1 , j = p n ( α p a p p l l ) y l 2 x p j , l = 1 , j p n a p j l l x j y l 2 j , k , l = 1 , k l n a p j k l x j y k y l l = 1 , j = p n ( α p a p p l l ) y l 2 x q j , l = 1 , j p n a p j l l x q y l 2 j , k , l = 1 , k l n a p j k l x p y k y l = l = 1 n ( α p a p p l l j = 1 , j p n a p j l l ) y l 2 x q j , k , l = 1 , k l n a p j k l x p y k y l max l N ( α p a p p l l j = 1 , j p n a p j l l ) x q 1 2 j , k , l = 1 , k l n a p j k l x p ,
which implies
( α p τ M ( A ) + 1 2 r p ( A ) ) x p ω p ( A ) x q .
From the q-th equation of τ M ( A ) x = A x y 2 and α q = min l N { a q q l l } , we yield
( α q τ M ( A ) ) x q = l = 1 , j = q n ( α q a q q l l ) y l 2 x q j , l = 1 , j q n a q j l l x j y l 2 j , k , l = 1 , k l n a q j k l x j y k y l l = 1 , j = q n ( α q a q q l l ) y l 2 x q j , l = 1 , j q , p n a q j l l x q y l 2 l = 1 , j = p n a q p l l x p y l 2 j , k , l = 1 , k l n a q j k l x p y k y l = l = 1 n ( α q a q q l l j = 1 , j q , p n a q j l l ) y l 2 x q l = 1 , j = p n a q p l l x p y l 2 j , k , l = 1 , k l n a q j k l x p y k y l max l N ( α q a q q l l j = 1 , j q , p n a q j l l ) x q + max l N ( a q p l l ) x p 1 2 j , k , l = 1 , k l n a q j k l x p ,
which implies
( α q τ M ( A ) ω q p ( A ) ) x q ( γ q p ( A ) 1 2 r q ( A ) ) x p .
When α p τ M ( A ) + 1 2 r p ( A ) 0 or α q τ M ( A ) ω q p ( A ) 0 , multiplying inequalities (14) with (16), one has
( α p τ M ( A ) + 1 2 r p ( A ) ) ( α q τ M ( A ) ω q p ( A ) ) ω p ( A ) ( γ q p ( A ) 1 2 r q ( A ) ) .
Then, solving for τ M ( A ) , we have
τ M ( A ) 1 2 ( α p + 1 2 r p ( A ) + α q ω q p ( A ) Δ p , q 1 2 ( A ) ) ,
where Δ p , q ( A ) = ( α p + 1 2 r p ( A ) α q + ω q p ( A ) ) 2 + 4 ω p ( A ) ( γ q p ( A ) 1 2 r q ( A ) ) .
When α p τ M ( A ) + 1 2 r p ( A ) < 0 and α q τ M ( A ) ω q p ( A ) < 0 , one has
τ M ( A ) > α p + 1 2 r p ( A ) and τ M ( A ) > α q ω q p ( A ) .
It follows from (17) and (18) that
τ M ( A ) min p , q N , q p { 1 2 { α p + 1 2 r p ( A ) + α q ω q p ( A ) Δ p , q 1 2 ( A ) } , α p + 1 2 r p ( A ) , α q ω q p ( A ) } .
On the other hand, set y t y s max k N , k t { y k } . From the t-th equation of τ M ( A ) y = A x 2 y , it follows that
( ( a 11 t t x 1 2 + + a n n t t x n 2 ) τ M ( A ) ) y t = i , j , k = 1 , i j n a i j k t x i x j y k i , k = 1 , k t n a i i k t x i 2 y k .
Letting β t = min i N { a i i t t } , by (19) and Lemma 6, we obtain
( β t τ M ( A ) ) y t = i = 1 , k = t n ( β t a i i t t ) x i 2 y t i , k = 1 , k t n a i i k t x i 2 y k i , j , k = 1 , i j n a i j k t x i x j y k i = 1 , k = t n ( β t a i i t t ) x i 2 y s i , k = 1 , k t n a i i k t x i 2 y s i , j , k = 1 , i j n a i j k t x i x j y t = i = 1 n ( β t a i i t t k = 1 , k t n a i i k t ) x i 2 y s i , j , k = 1 , i j n a i j k t x i x j y t max i N ( β t a i i t t k = 1 , k t n a i i k t ) y s 1 2 i , j , k = 1 , i j n a i j k t y t .
Using (20), we yield
( β t τ M ( A ) + 1 2 c t ( A ) ) y t m t ( A ) y s .
Recalling s-th equation of τ ( A ) y = A x 2 y and β s = min i N { a i i s s } , we have
( β s τ M ( A ) ) y s = i = 1 , k = s n ( β s a i i s s ) x i 2 y s i , k = 1 , k s n a i i k s x i 2 y k i , j , k = 1 , i j n a i j k s x i x j y k i = 1 , k = s n ( β s a i i s s ) x i 2 y t i , k = 1 , k s , t n a i i k s x i 2 y s i = 1 , k = t 2 a i i t s x i 2 y t i , j , k = 1 , i j n a i j k s x i x j y t = i = 1 n ( β s a i i s s k = 1 , k s , t n a i i k s ) x i 2 y s i = 1 , k = t n a i i t s x i 2 y t i , j , k = 1 , i j n a i j k s x i x j y t max i N ( β s a i i s s k = 1 , k s , t n a i i k s ) y t + max i N ( a i i t s ) y t 1 2 i , j , k = 1 , i j n a i j k s y t ,
which implies
( β s τ M ( A ) m s t ( A ) ) y s ( δ s t ( A ) 1 2 c s ( A ) ) y t .
When β t τ M ( A ) + 1 2 c t ( A ) 0 or β s τ M ( A ) m s t ( A ) 0 , multiplying inequalities (21) with (22), one has
( β t τ M ( A ) + 1 2 c t ( A ) ) ( β s τ M ( A ) m s t ( A ) ) m t ( A ) ( δ s t ( A ) 1 2 c s ( A ) ) .
Then, solving for τ ( A ) , we obtain
τ M ( A ) 1 2 { β t + 1 2 c t ( A ) + β s m s t ( A ) θ t , s 1 2 ( A ) } ,
where θ t , s ( A ) = ( β t + 1 2 c t ( A ) β s + m s t ( A ) ) 2 + 4 m t ( A ) ( δ s t ( A ) 1 2 c s ( A ) ) .
When β t τ M ( A ) + 1 2 c t ( A ) < 0 and β s τ M ( A ) m s t ( A ) < 0 , then we have
τ M ( A ) > β t + 1 2 c t ( A ) a n d τ M ( A ) > β s m s t ( A ) .
From (23) and (24), it holds that
τ M ( A ) min t , s N , s t { 1 2 { β t + 1 2 c t ( A ) + β s m s t ( A ) θ t , s 1 2 ( A ) } , β t + 1 2 c t ( A ) , β s m s t ( A ) } .
Thus, the desired result holds. ☐
In the following, we use Example 3.1 of [26] to show the superiority of our results.
Example 1.
Let A = ( a i j k l ) E 4 , 2 be an elasticity M-tensor, whose entries are
a i j k l = a 1111 = a 1122 = 4 . 1 , a 2211 = a 2222 = 5 , a 1112 = a 1121 = 1 , a 2212 = a 2221 = 1 , a 2111 = a 1211 = 1 , a 1222 = a 2122 = 1 , a i j k l = 0 , o t h e r w i s e .
The bounds via different estimations given in the literature are shown in Table 1:
By computations, we obtain that the minimum M-eigenvalue and corresponding with left and right M-eigenvectors are ( τ M ( A ) , x ¯ , y ¯ ) = ( 2.4534 , ( 0.8398 , 0.5430 ) , ( 0.7071 , 0.7071 ) ) . It is easy to see that the results given in Theorems 3.1–3.3 are sharper than some existing results [26]. It is noted that Theorems 2 and 3 have their own advantages. Theorem 3 can estimate the lower bound of the minimum M-eigenvalue more accurately, but the calculation of Theorem 2 is simpler.
Ding et al. [24] pointed out that a tensor is M-positive if and only if its smallest M-eigenvalue is positive. In the following, the results given in Theorems 2 and 3 can exactly check the positiveness of the elasticity M-tensor A .
Example 2.
Consider the elasticity M-tensor A = ( a i j k l ) E 4 , 2 defined by
a i j k l = a 1111 = 3 . 1 , a 1122 = 4 . 1 , a 2211 = 5 , a 2222 = 6 , a 1112 = a 1121 = 1 , a 2212 = a 2221 = 1 , a 2111 = a 1211 = 1 , a 1222 = a 2122 = 2 , a 1221 = a 1212 = a 2121 = a 2112 = 0 . 5 .
The bounds via different estimations given in the literature are shown in Table 2.
By computations, we obtain that the minimum M-eigenvalue and corresponding with left and right M-eigenvectors are ( τ M ( A ) , x ¯ , y ¯ ) = ( 1.3350 , ( 0.8462 , 0.5329 ) , ( 0.7190 , 0.6951 ) ) . From Theorems 2 and 3, we obtain 0.77 τ M ( A ) 1.55 , which shows that A is M-positive definite. However, the existing results of [26] cannot identify the M-positiveness of A .
For the medium-sized tensors, we show the validity of the estimations by our theorems.
Example 3.
All testing elasticity M-tensors A = ( a i j k l ) E 4 , n are generated as follows: a i i j j = n 2 + 4 i + 4 j and other elements are generated randomly in [ 0.5 , 0 ] by MATLAB R2014a, where n denotes variable dimension. For different dimensions elasticity M-tensors, the values presented in the table are the average values of 10 examples. The bounds via different estimations given in the literature are shown in Table 3.

4. Conclusions

In this paper, we exactly characterized the information of eigenvectors without irreducible conditions. Further, we proposed a new upper bound and two sharp lower bounds for the minimum M-eigenvalue of elasticity M-tensors by establishing new eigenvalue inequality. Numerical examples were proposed to verify the efficiency of the obtained results.

Author Contributions

Writing—original draft, Y.Z.; software, L.S.; writing—review and editing, G.W. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Natural Science Foundation of China (No. 11671228).

Acknowledgments

We are grateful to the anonymous reviewers whose comments and suggestions have contributed to improving the quality of research that is described in this paper.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Chang, K.; Qi, L.; Zhou, G. Singular values of a real rectangular tensor. J. Math. Anal. Appl. 2010, 370, 284–294. [Google Scholar] [CrossRef] [Green Version]
  2. Ding, W.; Qi, L.; Wei, Y. M-tensors and nonsingular M-tensors. Linear Algebra Appl. 2013, 439, 3264–3278. [Google Scholar] [CrossRef]
  3. Huang, Z.; Qi, L. Positive definiteness of paired symmetric tensors and elasticity tensors. J. Comput. Appl. Math. 2018, 388, 22–43. [Google Scholar] [CrossRef] [Green Version]
  4. Li, C.; Li, Y.; Kong, X. New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 2014, 21, 39–50. [Google Scholar] [CrossRef]
  5. Qi, L.; Luo, Z. Tensor Analysis: Spectral Theory and Special Tensors; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
  6. Yang, Y.; Yang, Q. Further results for Perron-Frobenius Theorem for nonnegative tensors II. SIAM. J. Matrix Anal. Appl. 2011, 32, 1236–1250. [Google Scholar] [CrossRef]
  7. Wang, G.; Zhou, G.; Caccetta, L. Z-eigenvalue inclusion theorems for tensors. Discrete Contin. Dyn. Syst. Ser. B 2017, 22, 187–198. [Google Scholar] [CrossRef] [Green Version]
  8. Bloy, L.; Verma, R. On Computing the Underlying Fiber Directions From the Diffusion Orientation Distribution Function in Medical Image Computing and Computer-Assisted Intervention; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–8. [Google Scholar]
  9. Li, G.; Qi, L.; Yu, G. The Z-eigenvalues of a symmetric tensor and its application to spectral hypergraph theory. Numer. Linear Algebra Appl. 2013, 20, 1001–1029. [Google Scholar] [CrossRef]
  10. Gao, L.; Luo, F.; Yan, Z. Finite-time annular domain stability of impulsive switched systems: Mode-dependent parameter approach. Int. J. Control 2019, 92, 1381–1392. [Google Scholar] [CrossRef]
  11. Gao, L.; Cao, Z.; Wang, G. Almost sure stability of discrete-time nonlinear Markovian jump delayed systems with impulsive signals. Nonlinear Anal-Hybri. 2019, 34, 248–263. [Google Scholar] [CrossRef]
  12. Gao, L.; Zhang, M.; Yao, X. Stochastic input-to-state stability for impulsive switched stochastic nonlinear systems with multiple jumps. Int. J. Syst. Sci. 2019, 50, 1860–1871. [Google Scholar] [CrossRef]
  13. Ni, Q.; Qi, L.; Wang, F. An eigenvalue method for testing the positive definiteness of a multivariate form. IEEE. Trans. Automat. Contr. 2008, 53, 1096–1107. [Google Scholar] [CrossRef]
  14. Love, A. A Treatise on the Mathematical Theory of Elasticity; Cambridge University Press: Cambridge, UK, 1927. [Google Scholar]
  15. Annin, B.D.; Ostrosablin, N.I. Anisotropy of elastic properties of materials. J. Appl. Mech. Tech. Phys. 2008, 49, 998–1014. [Google Scholar] [CrossRef]
  16. Ostrosablin, N.I. On the structure of the elastic tensor and the classification of anisotropic materials. J. Appl. Mech. Tech. Phys. 1986, 27, 600–607. [Google Scholar] [CrossRef]
  17. Ostrosablin, N.I. Functional relation between two symmetric seconde-rank tensors. J. Appl. Mech. Tech. Phys. 2007, 48, 734–736. [Google Scholar] [CrossRef]
  18. Nikabadze, M.U. Eigenvalue problem for tensors of even rank and its applications in mechanics. J. Math. Sci. 2017, 221, 174–204. [Google Scholar] [CrossRef]
  19. Rykhlevskii, Y. On Hooke’s law. Prikl. Mat. Mekh. 1984, 48, 420–435. [Google Scholar]
  20. Vekua, I.N. Fundamentals of Tensor Analysis and Theory of Covariants; Nauka: Moscow, Russia, 1978. [Google Scholar]
  21. Zubov, L.; Rudev, A. On necessary and sufficient conditions of strong ellipticity of equilibrium equations for certain classes of anisotropic linearly elastic materials. Z. Angew. Math. Mech. 2016, 96, 1096–1102. [Google Scholar] [CrossRef]
  22. Nikabadze, M.U. Topics on tensor calculus with applications to mechanics. J. Math. Sci. 2017, 225, 1–194. [Google Scholar] [CrossRef]
  23. Nikabadze, M.U. Eigenvalue Problems of a Tensor and a Tensor-Block Matrix (TBM) of Any Even Rank with Some Applications. Generalized Continua as Models for Classical and Advanced Materials; Springer: Cham, Switzerland, 2016; pp. 279–317. [Google Scholar]
  24. Ding, W.; Liu, J.; Qi, L.; Yan, H. Elasticity M-tensors and the strong ellipticity condition. arXiv 2017, arXiv:1705.09911v2. [Google Scholar] [CrossRef]
  25. Han, D.; Dai, H.; Qi, Q. Conditions for strong ellipticity of anisotropic elastic materials. J. Elasticity 2009, 97, 1–13. [Google Scholar] [CrossRef]
  26. He, J.; Xu, G.; Liu, Y. Some inequalities for the minimum M-eigenvalue of elasticity M-tensors. J. Ind. Manag. Optim. 2019, 13, 1. [Google Scholar] [CrossRef]
  27. Qi, L.; Dai, H.; Han, D. Conditions for strong ellipticity and M-eigenvalues. Front. Math. China 2009, 4, 349–364. [Google Scholar] [CrossRef] [Green Version]
  28. Wang, G.; Wang, Y.; Liu, L. Bound estimations on the eigenvalues for Fan Product of M-tensors. Taiwan. J. Math. 2019, 23, 751–766. [Google Scholar] [CrossRef]
  29. Wang, Y.; Zhang, K.; Sun, H. Criteria for strong H-tensors. Front. Math. China 2016, 11, 577–592. [Google Scholar] [CrossRef]
  30. Zhang, L.; Qi, L.; Zhou, G. M-tensors and some applications. SIAM. J. Matrix Anal. Appl. 2014, 32, 437–452. [Google Scholar] [CrossRef]
  31. Zhao, J.; Li, C. Singular value inclusion sets for rectangular tensors. Linear Multilinear Algebra 2018, 66, 1333–1350. [Google Scholar] [CrossRef]
  32. Bozorgmanesh, H.; Hajarian, M. Solving tensor E-eigenvalue problem faster. Appl. Math. Lett. 2020, 100, 106020. [Google Scholar] [CrossRef]
  33. Wang, Y.; Qi, L.; Zhang, X. A practical method for computing the largest M-eigenvalue of a fourth-order partially symmetric tensor. Numer. Linear Algebra Appl. 2009, 16, 589–601. [Google Scholar] [CrossRef]
  34. Wang, G.; Wang, Y.; Wang, Y. Some Ostrowski-type bound estimations of spectral radius for weakly irreducible nonnegative tensors. Linear Multilinear Algebra 2019. [Google Scholar] [CrossRef]
  35. Zhou, G.; Wang, G.; Qi, L.; Alqahtani, A. A fast algorithm for the spectral radii of weakly reducible nonnegative tensors. Numer. Linear Algebra Appl. 2018, 25, e2134. [Google Scholar] [CrossRef]
  36. He, J.; Liu, Y.; Xu, G. New sufficient condition for the positive definiteness of fourth order tensors. Mathematics 2018, 6, 303. [Google Scholar] [CrossRef] [Green Version]
  37. Li, C.; Li, Y. An eigenvalue localization set for tensors with applications to determine the positive (semi-) deffiniteness of tensors. Linear Multilinear Algebr. 2016, 64, 587–601. [Google Scholar] [CrossRef]
  38. Wang, G.; Zhou, G.; Caccetta, L. Sharp Brauer-type eigenvalue inclusion theorems for tensors. Pac. J. Optim. 2018, 14, 227–244. [Google Scholar]
  39. Wang, G.; Wang, Y.; Zhang, Y. Brauer-type upper bounds for Z-spectral radius of weakly symmetric nonnegative tensors. J. Math. Inequal. 2019, 13, 1105–1116. [Google Scholar] [CrossRef] [Green Version]
  40. Wang, G.; Sun, L.; Liu, L. M-eigenvalues-based sufficient conditions for the positive definiteness of fourth-order partially symmetric tensors. Complexity 2020, 2020, 2474278. [Google Scholar] [CrossRef] [Green Version]
  41. Zhang, Y.; Zhang, Y.; Wang, G. Exclusion sets in the S-type eigenvalue localization sets for tensors. Open Math. 2019, 17, 1136–1146. [Google Scholar] [CrossRef]
  42. Cui, J.; Peng, G.; Lu, Q.; Huang, Z. Several new estimates of the minimum H-eigenvalue for nonsingular M-tensors. Bull. Malays. Math. Sci. Soc. 2019, 42, 1213–1236. [Google Scholar] [CrossRef]
  43. Zhao, J.; Sang, C. New bounds for the minimum eigenvalue of M-tensors. Open Math. 2017, 2017, 296–303. [Google Scholar] [CrossRef]
Table 1. Bound estimations of the minimum M-eigenvalue with different methods
Table 1. Bound estimations of the minimum M-eigenvalue with different methods
ReferencesInterval
Lemma 2 and Theorem 3.1 of [26] 1.10 τ M ( A ) 4.10
Lemma 2 and Theorem 3.2 of [26] 1.29 τ M ( A ) 4.10
Theorem 1 and Theorem 2 2.10 τ M ( A ) 2.55
Theorem 1 and Theorem 3 2.35 τ M ( A ) 2.55
Table 2. Bound estimations of the minimum M-eigenvalue and testing the M-positive definiteness
Table 2. Bound estimations of the minimum M-eigenvalue and testing the M-positive definiteness
ReferencesInterval
Lemma 2 and Theorem 3.1 of [26] 1.90 τ M ( A ) 3.10
Lemma 2 and Theorem 3.2 of [26] 1.45 τ M ( A ) 3.10
Theorems 1 and 2 0.60 τ M ( A ) 1.55
Theorems 1 and 3 0.77 τ M ( A ) 1.55
Table 3. Comparison estimations of the minimum M-eigenvalue with random elasticity M-tensors
Table 3. Comparison estimations of the minimum M-eigenvalue with random elasticity M-tensors
References n = 10
Bounds
n = 20
Bounds
n = 30
Bounds
Lemma 2.2 and Theorem 3.1 of [9][−129.8, 105][−1561.9, 408][−5660.2, 908]
Lemma 2.2 and Theorem 3.2 of [9][−102.4, 105][−1324.4, 408][−4975.5, 908]
Theorems 1 and 2[−8.9, 102.6][−530.4, 383.9][−2173.7, 799.7]
Theorems 1 and 3[3.8, 102.6][−419.3, 383.9][−1956.8, 799.7]

Share and Cite

MDPI and ACS Style

Zhang, Y.; Sun, L.; Wang, G. Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors. Mathematics 2020, 8, 250. https://doi.org/10.3390/math8020250

AMA Style

Zhang Y, Sun L, Wang G. Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors. Mathematics. 2020; 8(2):250. https://doi.org/10.3390/math8020250

Chicago/Turabian Style

Zhang, Ying, Linxuan Sun, and Gang Wang. 2020. "Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors" Mathematics 8, no. 2: 250. https://doi.org/10.3390/math8020250

APA Style

Zhang, Y., Sun, L., & Wang, G. (2020). Sharp Bounds on the Minimum M-Eigenvalue of Elasticity M-Tensors. Mathematics, 8(2), 250. https://doi.org/10.3390/math8020250

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop