Nonlinear Integro-Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals with Nonlocal Boundary Data
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
3.1. Existence Results
- There exist such that
- There exist such that
- and , where
- There exist continuous nondecreasing functions such that , and where .
- There exist a constant such that
3.2. Uniqueness Result
3.3. Examples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Henderson, J.; Luca, R.; Tudorache, A. On a system of fractional differential equations with coupled integral boundary conditions. Fract. Calc. Appl. Anal. 2015, 18, 361–386. [Google Scholar] [CrossRef]
- Peng, L.; Zhou, Y. Bifurcation from interval and positive solutions of the three-point boundary value problem for fractional differential equations. Appl. Math. Comput. 2015, 257, 458–466. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Ahmad, B.; Ntouyas, S.K. Nonlocal initial value problems for Hadamard-type fractional differential equations and inclusions. Rocky Mt. J. Math. 2018, 48, 1043–1068. [Google Scholar] [CrossRef]
- Cui, Y.; Ma, W.; Sun, Q.; Su, X. New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal. Model. Control 2018, 23, 31–39. [Google Scholar] [CrossRef]
- Ahmad, B.; Luca, R. Existence of solutions for sequential fractional integro-differential equations and inclusions with nonlocal boundary conditions. Appl. Math. Comput. 2018, 339, 516–534. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ahmad, B.; Alghanmi, M.; Ntouyas, S.K. On a generalized Langevin type nonlocal fractional integral multivalued problem. Mathematics 2019, 7, 1015. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Alghamdi, N.; Alsaedi, A.; Ntouyas, S.K. A system of coupled multi-term fractional differential equations with three-point coupled boundary conditions. Fract. Calc. Appl. Anal. 2019, 22, 601–618. [Google Scholar] [CrossRef]
- Alsaedi, A.; Ahmad, B.; Alghanmi, M. Extremal solutions for generalized Caputo fractional differential equations with Steiltjes-type fractional integro-initial conditions. Appl. Math. Lett. 2019, 91, 113120. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Alruwaily, Y.; Ntouyas, S.K. Nonlinear multi-term fractional differential equations with Riemann-Stieltjes integro-multipoint boundary conditions. AIMS Math. 2020, 5, 1446–1461. [Google Scholar] [CrossRef]
- Liang, S.; Wang, L.; Yin, G. Fractional differential equation approach for convex optimization with convergence rate analysis. Optim. Lett. 2020, 14, 145–155. [Google Scholar] [CrossRef]
- Atanackovic, T.M.; Stankovic, B. On a differential equation with left and right fractional derivatives. Fract. Calc. Appl. Anal. 2007, 10, 139–150. [Google Scholar] [CrossRef]
- Zhang, L.; Ahmad, B.; Wang, G. The existence of an extremal solution to a nonlinear system with the right-handed Riemann-Liouville fractional derivative. Appl. Math. Lett. 2014, 31, 1–6. [Google Scholar] [CrossRef]
- Khaldi, R.; Guezane-Lakoud, A. Higher order fractional boundary value problems for mixed type derivatives. J. Nonlinear Funct. Anal. 2017, 30, 9. [Google Scholar]
- Lakoud, A.G.; Khaldi, R.; Kilicman, A. Existence of solutions for a mixed fractional boundary value problem. Adv. Differ. Equ. 2017, 2017, 164. [Google Scholar] [CrossRef]
- Guezane-Lakoud, A.; Khaldi, R.; Torres, D.F.M. On a fractional oscillator equation with natural boundary conditions. Progr. Fract. Differ. Appl. 2017, 3, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, B.; Ntouyas, S.K.; Alsaedi, A. Existence theory for nonlocal boundary value problems involving mixed fractional derivatives. Nonlinear Anal. Model. Control 2019, 24, 937–957. [Google Scholar] [CrossRef]
- Laitinen, M.; Tiihonen, T. Heat transfer in conducting and radiating bodies. Appl. Math. Lett. 1997, 10, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Laitinen, M.; Tiihonen, T. Integro-differential equation modelling heat transfer in conducting, radiating and semitransparent materials. Math. Methods Appl. Sci. 1998, 21, 375–392. [Google Scholar] [CrossRef]
- Hajmohammadi, M.R.; Nourazar, S.S.; Manesh, A.H. Semi-analytical treatments of conjugate heat transfer. J. Mech. Eng. Sci. 2013, 227, 492–503. [Google Scholar] [CrossRef]
- Yang, A.M.; Han, Y.; Zhang, Y.Z.; Wang, L.T.; Zhang, D.; Yang, X.J. On nonlocal fractional Volterra integro-differential equations in fractional steady heat transfer. Therm. Sci. 2016, 20, S789–S793. [Google Scholar] [CrossRef] [Green Version]
- Tarasov, V.E. Fractional integro-differential equations for electromagnetic waves in dielectric media. Theor. Math. Phys. 2009, 158, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Krasnoselskii, M.A. Two remarks on the method of successive approximations. Uspekhi Mat. Nauk. 1955, 10, 123–127. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2005. [Google Scholar]
- Agrawal, O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, B.; Broom, A.; Alsaedi, A.; Ntouyas, S.K. Nonlinear Integro-Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals with Nonlocal Boundary Data. Mathematics 2020, 8, 336. https://doi.org/10.3390/math8030336
Ahmad B, Broom A, Alsaedi A, Ntouyas SK. Nonlinear Integro-Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals with Nonlocal Boundary Data. Mathematics. 2020; 8(3):336. https://doi.org/10.3390/math8030336
Chicago/Turabian StyleAhmad, Bashir, Abrar Broom, Ahmed Alsaedi, and Sotiris K. Ntouyas. 2020. "Nonlinear Integro-Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals with Nonlocal Boundary Data" Mathematics 8, no. 3: 336. https://doi.org/10.3390/math8030336
APA StyleAhmad, B., Broom, A., Alsaedi, A., & Ntouyas, S. K. (2020). Nonlinear Integro-Differential Equations Involving Mixed Right and Left Fractional Derivatives and Integrals with Nonlocal Boundary Data. Mathematics, 8(3), 336. https://doi.org/10.3390/math8030336