Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus
Abstract
:1. Preliminaries and Basic Lemmas
- (i)
- Theis conformable fractional derivative and
- (ii)
- Fora all, thenisfractional differentiable and
- (iii)
- If v and u arefractional differentiable, we haveisfractional differentiable and
- (iv)
- If v isfractional differentiable, thenisfractional differentiable with
- (v)
- If v and u arefractional differentiable, then is fractional differentiable with
- (i)
- (ii)
- (iii)
- (iv)
- (v)
2. Main Results
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H. Notes on a theorem of Hilbert. Math. Z. 1920, 6, 314–317. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on some points in the integral calculus, LX. An inequality between integrals. Mess. Math. 1925, 54, 150–156. [Google Scholar]
- Hardy, G.H. Notes on some points in the integral calculus, LXIV. Further inequalities between integrals. Mess. Math. 1928, 57, 12–16. [Google Scholar]
- Copson, E.T. Note on series of positive terms. J. Lond. Math. Soc. 1927, 2, 9–12. [Google Scholar] [CrossRef]
- Leindler, L. Generalization of inequalities of Hardy and Littlewood. Acta Sci. Math. 1970, 31, 279–285. [Google Scholar]
- Leindler, L. Further sharpining of inequalities of Hardy and Littlewood. Acta Sci. Math. 1990, 54, 285–289. [Google Scholar]
- Leindler, L. A theorem of Hardy-Bennett-type. Acta Math. Hungar. 1998, 87, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Leindler, L. Two Hardy-Bennett-type theorems. Acta Math. Hungar. 1999, 85, 265–276. [Google Scholar] [CrossRef]
- Copson, E.T. Note on series of positive terms. J. Lond. Math. Soc. 1928, 3, 49–51. [Google Scholar] [CrossRef]
- Copson, E.T. Some integral inequalities. Prof. R. Soc. Edinburg. Sect. A 1976, 75, 157–164. [Google Scholar] [CrossRef]
- Bennett, G. Some elementary inequalities. Quart. J. Math. Oxford 1987, 38, 401–425. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; O’Regan, D.; Saker, S.H. Some dynamic wirtinger-type inequalities and their applications. Pacific J. Math. 2011, 252, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Hardy Type Ineqaualities on Time Scales; Springer: Basel, Switzerland, 2016. [Google Scholar]
- Saker, S.H. Some nonlinear dynamic inequalities on time scales and applications. J. Math. Inequal. 2010, 4, 561–579. [Google Scholar] [CrossRef]
- Hilger, S. Analysis on measure chains—A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2001. [Google Scholar]
- Bogdan, K.; Dyda, B. The best constant in a fractional Hardy inequality. Math. Nach. 2011, 284, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Jleli, M.; Samet, B. Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Inequal. Appl. 2015, 18, 443–451. [Google Scholar] [CrossRef]
- Yildiz, C.; Ozdemir, M.E.; Onelan, H.K. Fractional integral inequalities for different functions. New Trends Math. Sci. 2015, 3, 110–117. [Google Scholar]
- Abdeljawad, T. On conformable fractional calculus. J. Comp. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comp. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Akkurt, A.; Yildirim, M.E.; Yildirim, H. On some integral inequalities for conformable fractional integrals. RGMIA Res. Rep. Collect. 2016, 19, 107. [Google Scholar]
- Chu, Y.M.; Khan, M.A.; Ali, T.; Dragomir, S.S. Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017, 1, 93. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Ali, T.; Dragomir, S.S.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for conformable fractional integrals. Rev. Real Acad. Cienc. Exactas 2018, 112, 1033–1048. [Google Scholar] [CrossRef]
- Set, E.; Gözpınar, A.; Ekinci, A. Hermite-Hadamard type inequalities via conformable fractional integrals. Acta Math. Univ. Comenian. 2017, 86, 309–320. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Budak, H. New inequalities of Opial type for conformable fractional integrals. Turkish J. Math. 2017, 41, 1164–1173. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Budak, H. Opial type inequalities for conformable fractional integrals. Rgmia Res. Rep. Collect. 2016, 19, 93. [Google Scholar]
- Sarikaya, M.Z.; Yaldiz, H.; Budak, H. Steffensen’s integral inequality for conformable fractional integrals. Int. J. Anal. Appl. 2017, 15, 23–30. [Google Scholar]
- Benkhettou, N.; Salima, H.; Torres, D.F.M. A conformable fractional calculus on arbitrary time scales. J. King Saud Univ. Science 2016, 1, 93–98. [Google Scholar] [CrossRef]
- Nwaeze, E.R.; Torres, D.F.M. Chain rules and inequalities for the BHT fractional calculus on arbitrary timescales. Arab J. Math. 2017, 6, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Saker, S.H.; O’Regan, D.; Agarwal, R.P. Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales. Math. Nachr. 2014, 287, 686–698. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saker, S.; Kenawy, M.; AlNemer, G.; Zakarya, M. Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus. Mathematics 2020, 8, 434. https://doi.org/10.3390/math8030434
Saker S, Kenawy M, AlNemer G, Zakarya M. Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus. Mathematics. 2020; 8(3):434. https://doi.org/10.3390/math8030434
Chicago/Turabian StyleSaker, Samir, Mohammed Kenawy, Ghada AlNemer, and Mohammed Zakarya. 2020. "Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus" Mathematics 8, no. 3: 434. https://doi.org/10.3390/math8030434
APA StyleSaker, S., Kenawy, M., AlNemer, G., & Zakarya, M. (2020). Some Fractional Dynamic Inequalities of Hardy’s Type via Conformable Calculus. Mathematics, 8(3), 434. https://doi.org/10.3390/math8030434