Efficient Hyper-Parameter Selection in Total Variation-Penalised XCT Reconstruction Using Freund and Shapire’s Hedge Approach
Abstract
:1. Introduction
1.1. Inverse Problems, Regularisation and Hyperparameter Tuning
1.2. Algorithms for XCT with Few Projections
1.3. The Problem of Hyperparameter Calibration
2. The Adaptive-Weighted Projection-Controlled Steepest Descent of Lohvithee et al.
2.1. Description of the Reconstruction Method
Algorithm 1: Adaptive-weighted Projection-Controlled Steepest Descent (AwPCSD) |
2.2. Hyper-Parameters and Stopping Criterion of the AwPCSD Algorithm
2.2.1. Data-inconsistency-tolerance Parameter
2.2.2. TV sub-iteration Number ()
2.2.3. Relaxation Parameter ()
2.2.4. Reduction Factor of Relaxation Parameter ()
2.2.5. Scale Factor for Adaptive-weighted TV Norm ()
3. Hedging Parameter Selection
3.1. The Proposed Approach
- A prediction is performed for the next observed projection and an error is measured for every ,
- A loss is computed for each value ,
- A probability, denoted by , is associated with each and the probability vector is updated according to the rule [27]:
Algorithm 2: Hedge based selection |
3.2. The Cross-Validation Approach
4. Numerical Studies
4.1. Experiments with Digital 4D Extended Cardiac-Torso (XCAT) Phantom
4.2. Performance Evaluation
4.3. Experiments with Different Datasets
4.4. Experiments with Real Data
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Candès, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Candès, E.J. Compressive sampling. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, 22–30 August 2006; Volume 3, pp. 1433–1452. [Google Scholar]
- Candès, E.J.; Wakin, M.B. An introduction to compressive sampling. IEEE Signal Process. Mag. 2008, 25, 21–30. [Google Scholar] [CrossRef]
- Chrétien, S.; Darses, S. Sparse recovery with unknown variance: a LASSO-type approach. IEEE Trans. Inf. Theory 2014, 60, 3970–3988. [Google Scholar] [CrossRef]
- Bredies, K.; Kunisch, K.; Pock, T. Total generalized variation. SIAM J. Imaging Sci. 2010, 3, 492–526. [Google Scholar] [CrossRef]
- Goldstein, T.; Osher, S. The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2009, 2, 323–343. [Google Scholar] [CrossRef]
- Chambolle, A. An algorithm for total variation minimization and applications. J. Math. Imaging vis. 2004, 20, 89–97. [Google Scholar]
- Feldkamp, L.; Davis, L.; Kress, J. Practical cone-beam algorithm. JOSA A 1984, 1, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Sidky, E.Y.; Kao, C.M.; Pan, X. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J. X-ray Sci. Technol. 2006, 14, 119–139. [Google Scholar]
- Sidky, E.Y.; Pan, X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 2008, 53, 4777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Yin, Z.; Ma, X. Nonparametric optimization of constrained total variation for tomography reconstruction. Comput. Biol. Med. 2013, 43, 2163–2176. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Sun, Y.; Yuan, Y. Optimization for limited angle tomography in medical image processing. Pattern Recognit. 2011, 44, 2427–2435. [Google Scholar] [CrossRef]
- Tian, Z.; Jia, X.; Yuan, K.; Pan, T.; Jiang, S.B. Low-dose CT reconstruction via edge-preserving total variation regularization. Phys. Med. Biol. 2011, 56, 5949. [Google Scholar] [CrossRef]
- Liu, L.; Lin, W.; Jin, M. Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms. Comput. Biol. Med. 2015, 56, 97–106. [Google Scholar] [CrossRef]
- Grudzien, K.; Romanowski, A.; Williams, R.A. Application of a Bayesian approach to the tomographic analysis of hopper flow. Part. Part. Syst. Charact. 2005, 22, 246–253. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, J.; Fan, Y.; Liang, Z. Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction. Phys. Med. Biol. 2012, 57, 7923. [Google Scholar] [CrossRef]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, T.; Liang, Z.; Xing, L. Dose reduction for kilovotage cone-beam computed tomography in radiation therapy. Phys. Med. Biol. 2008, 53, 2897. [Google Scholar] [CrossRef] [Green Version]
- Lohvithee, M.; Biguri, A.; Soleimani, M. Parameter selection in limited data cone-beam CT reconstruction using edge-preserving total variation algorithms. Phys. Med. Biol. 2017, 62, 9295. [Google Scholar] [CrossRef]
- Claesen, M.; De Moor, B. Hyperparameter search in machine learning. arXiv preprint 2015, arXiv:1502.02127. [Google Scholar]
- Padierna, L.C.; Carpio, M.; Rojas, A.; Puga, H.; Baltazar, R.; Fraire, H. Hyper-parameter tuning for support vector machines by estimation of distribution algorithms. In Nature-Inspired Design of Hybrid Intelligent Systems; Springer: New York, NY, USA, 2017; pp. 787–800. [Google Scholar]
- Lorenzo, P.R.; Nalepa, J.; Kawulok, M.; Ramos, L.S.; Pastor, J.R. Particle swarm optimization for hyper-parameter selection in deep neural networks. In Proceedings of the Genetic and Evolutionary Computation Conference, Berlin, Germany, 15–19 July 2017; pp. 481–488. [Google Scholar]
- Palar, P.S.; Zuhal, L.R.; Shimoyama, K. On the use of metaheuristics in hyperparameters optimization of gaussian processes. In Proceedings of the Genetic and Evolutionary Computation Conference Companion, Prague, Czech Republic, 13–17 July 2019; pp. 263–264. [Google Scholar]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Arora, S.; Hazan, E.; Kale, S. The Multiplicative Weights Update Method: a Meta-Algorithm and Applications. Theory Comput. 2012, 8, 121–164. [Google Scholar] [CrossRef]
- Biguri, A.; Dosanjh, M.; Hancock, S.; Soleimani, M. TIGRE: a MATLAB-GPU toolbox for CBCT image reconstruction. Biomed. Phys. Eng. Exp. 2016, 2, 055010. [Google Scholar] [CrossRef]
- Andersen, A.H.; Kak, A.C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason. Imaging 1984, 6, 81–94. [Google Scholar] [CrossRef]
- Arlot, S.; Celisse, A. A survey of cross-validation procedures for model selection. Stat. Surv. 2010, 4, 40–79. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Chretien, S.; Gibberd, A.; Roy, S. Hedging hyperparameter selection for basis pursuit. arXiv preprint 2018, arXiv:1805.01870. [Google Scholar]
- Heidrich-Meisner, V.; Igel, C. Hoeffding and Bernstein races for selecting policies in evolutionary direct policy search. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 401–408. [Google Scholar]
- Segars, W.; Sturgeon, G.; Mendonca, S.; Grimes, J.; Tsui, B.M. 4D XCAT phantom for multimodality imaging research. Med. Phys. 2010, 37, 4902–4915. [Google Scholar] [CrossRef]
- Xu, J.; Tsui, B.M. Electronic noise modeling in statistical iterative reconstruction. IEEE Trans. Image Process. 2009, 18, 1228–1238. [Google Scholar]
- Ma, J.; Liang, Z.; Fan, Y.; Liu, Y.; Huang, J.; Chen, W.; Lu, H. Variance analysis of x-ray CT sinograms in the presence of electronic noise background. Med. Phys. 2012, 39, 4051–4065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Bovik, A.C. A universal image quality index. IEEE Signal Process. Lett. 2002, 9, 81–84. [Google Scholar] [CrossRef]
- Zhang, H.; Ouyang, L.; Huang, J.; Ma, J.; Chen, W.; Wang, J. Few-view cone-beam CT reconstruction with deformed prior image. Med. Phys. 2014, 41, 121905. [Google Scholar] [CrossRef] [PubMed]
Hyper-Parameters | Values |
---|---|
0,50,70,100,200,500, | |
2,,, | |
2,4,6,8,10,12,14,16,18,20,22,24,26,28,30 | |
1 | |
0.99 | |
0.0212 |
Approaches | |||||
---|---|---|---|---|---|
Hedge-based approach | 0 | 10 | 1 | 0.99 | 0.0212 |
Cross-Validation approach | 0 | 8 | 1 | 0.99 | 0.0212 |
Approaches | Relative Errors (%) | UQI | Computational Time |
---|---|---|---|
(h) | |||
Hedge-based | 4.9349 | 0.9972 | 16.12 |
Cross-validation | 5.2597 | 0.9970 | 47.15 |
Parametrisation Details | Male Phantom | Female Phantom |
---|---|---|
motion option | beating heart only | respiratory only |
length of beating heart cycle | 1 sec | 5 secs |
starting phase of the heart | 0.0 | 0.4 |
wall thickness for the left | ||
ventricle(LV) | non-uniform | uniform |
LV end-systolic volume | 0.0 | 0.5 |
start phase of the respiratory | 0.0 | 0.4 |
anteroposterior diameter | ||
of the ribcage, body and lungs | 0.5 | 1.2 |
heart’s lateral motion | ||
during breathing | 0.0 | 0.5 |
heart’s up/down motion | ||
during breathing | 2.0 | 3.0 |
breast type | prone | supine |
factor to compress breast | half compression | no compression |
thickness of sternum | 0.4 | 0.6 |
thickness of scapula | 0.35 | 0.55 |
thickness of ribs | 0.3 | 0.5 |
thickness of backbone | 0.4 | 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrétien, S.; Lohvithee, M.; Sun, W.; Soleimani, M. Efficient Hyper-Parameter Selection in Total Variation-Penalised XCT Reconstruction Using Freund and Shapire’s Hedge Approach. Mathematics 2020, 8, 493. https://doi.org/10.3390/math8040493
Chrétien S, Lohvithee M, Sun W, Soleimani M. Efficient Hyper-Parameter Selection in Total Variation-Penalised XCT Reconstruction Using Freund and Shapire’s Hedge Approach. Mathematics. 2020; 8(4):493. https://doi.org/10.3390/math8040493
Chicago/Turabian StyleChrétien, Stéphane, Manasavee Lohvithee, Wenjuan Sun, and Manuchehr Soleimani. 2020. "Efficient Hyper-Parameter Selection in Total Variation-Penalised XCT Reconstruction Using Freund and Shapire’s Hedge Approach" Mathematics 8, no. 4: 493. https://doi.org/10.3390/math8040493
APA StyleChrétien, S., Lohvithee, M., Sun, W., & Soleimani, M. (2020). Efficient Hyper-Parameter Selection in Total Variation-Penalised XCT Reconstruction Using Freund and Shapire’s Hedge Approach. Mathematics, 8(4), 493. https://doi.org/10.3390/math8040493