On Convergence Rates of Some Limits
Abstract
:1. Introduction
2. The Case
2.1. The Limit Function
2.2. Representation
2.2.1. First Form
- 1.
- In the special case where , we have
- 2.
- 3.
- Using , we also have that where . Note that
2.2.2. Second Form
2.2.3. Third Form
2.3. Sufficient Conditions
- (a)
- If , we have with and
- (b)
- If , then we haveWe find that
- (c)
- If , as before, we haveFurther, we haveWe conclude that
- (d)
- In general, we get a result of the typeAs a special case, we can take : if , then
2.4. More Results
2.5. Examples
2.5.1. Example 1
2.5.2. Example 2
2.5.3. Example 3
2.5.4. Example 4
3. The Case
3.1. The Limit
3.2. Special Case
3.3. Representation Theorem
3.4. More Results
- (a)
- .
- (b)
- , where , with .Recall that means that as .
3.5. Examples
3.5.1. Example 1
3.5.2. Example 2
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Zygmund, A. Trigonometric Series, 2nd ed.; Cambridge University Press: Cambridge, UK, 1959; Volume 1. [Google Scholar]
- Karamata, J. Sur un mode de croissance régulière des fonctions. Mathematica 1930, 4, 38–53. [Google Scholar]
- Seneta, E. Regularly Varying Functions, Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1976; Volume 508. [Google Scholar]
- Seneta, E. Slowly varying functions in the Zygmund sense and generalized regular variation. J. Math. Anal. Appl. 2019, 475, 1647–1657. [Google Scholar] [CrossRef]
- Omey, E.; Cadena, M. New results on slowly varying functions in the Zygmund sense. Proc. Jap. Acad. Ser. A 2019. accepted. [Google Scholar]
- Omey, E. On the class gamma and related classes of functions. Publ. Inst. Math. 2013, 93, 1–18. [Google Scholar] [CrossRef]
- Bingham, N.H.; Goldie, C.M.; Teugels, J.L. Regular Variation; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Uchaikin, V.V.; Zolotarev, V.M. Chance and Stability: Stable Distributions and Their Applications; De Gruyter: Utrecht, The Netherlands, 1999. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omey, E.; Cadena, M. On Convergence Rates of Some Limits. Mathematics 2020, 8, 634. https://doi.org/10.3390/math8040634
Omey E, Cadena M. On Convergence Rates of Some Limits. Mathematics. 2020; 8(4):634. https://doi.org/10.3390/math8040634
Chicago/Turabian StyleOmey, Edward, and Meitner Cadena. 2020. "On Convergence Rates of Some Limits" Mathematics 8, no. 4: 634. https://doi.org/10.3390/math8040634
APA StyleOmey, E., & Cadena, M. (2020). On Convergence Rates of Some Limits. Mathematics, 8(4), 634. https://doi.org/10.3390/math8040634