A Rational Approximation for the Complete Elliptic Integral of the First Kind †
Abstract
:1. Introduction
2. Proof of Theorem 1
3. Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Yang, Z.-H.; Tian, J.-F. A class of completely mixed monotonic functions involving the gamma function with applications. Proc. Am. Math. Soc. 2018, 146, 4707–4721. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F.; Ha, M.-H. A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder. Proc. Am. Math. Soc. 2020, 148, 2163–2178. [Google Scholar] [CrossRef]
- Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 4th ed.; Cambridge Univ. Press: London, UK, 1958. [Google Scholar]
- Hu, X.-M.; Tian, J.-F.; Chu, Y.-M.; Lu, Y.-X. On Cauchy-Schwarz inequality for N-tuple Diamond-Alpha integral. J. Inequal. Appl. 2020, 2020, 8. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Zhu, Y.-R.; Cheung, W.-S. N-tuple Diamond-Alpha integral and inequalities on time scales. N-tuple Diamond-Alpha integral and inequalities on time scales. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 2189–2200. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Tian, J.-F. Sharp bounds for the ratio of two zeta functions. J. Comput. Appl. Math. 2020, 364, 112359. [Google Scholar] [CrossRef]
- Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 1992, 23, 512–524. [Google Scholar] [CrossRef]
- Alzer, H.; Qiu, S.-L. Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 2004, 172, 289–312. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 2018, 462, 1714–1726. [Google Scholar] [CrossRef]
- Carlson, B.C.; Guatafson, J.L. Asymptotic expansion of the first elliptic integral. SIAM J. Math. Anal. 1985, 16, 1072–1092. [Google Scholar] [CrossRef]
- Qiu, S.-L.; Vamanamurthy, M.K. Sharp estimates for complete elliptic integrals. SIAM J. Math. Anal. 1996, 27, 823–834. [Google Scholar] [CrossRef]
- Alzer, H. Sharp inequalities for the complete elliptic integral of the first kind. Math. Proc. Camb. Philos. Soc. 1998, 124, 309–314. [Google Scholar] [CrossRef]
- Wang, M.K.; Zhang, W.; Chu, Y.-M. Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. 2019, 39, 1440–1450. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.-M. A monotonicity property involving the generalized elliptic integrals of the first kind. Math. Inequal. Appl. 2017, 20, 729–735. [Google Scholar]
- Yang, Z.-H.; Tian, J. Convesity and monotonicity for elliptic integrals of the first kind and applications. Appl. Anal. Discret. Math. 2019, 13, 240–260. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H.; Chu, Y.-M.; Tao, X.-J. A double inequality for the trigamma function and its applications. Abstr. Appl. Anal. 2014, 2014, 702718. [Google Scholar] [CrossRef]
- Yang, Z.-H. Sharp approximations for the complete elliptic integrals of the second kind by one-parameter means. J. Math. Anal. Appl. 2018, 467, 446–461. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Chu, Y.-M.; Zhang, W. High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 2019, 348, 552–564. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M. Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 2018, 21, 1185–1199. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On approximating the error function. Math. Inequal. Appl. 2018, 21, 469–479. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Qian, W.-M.; Chu, Y.-M.; Zhang, W. On rational bounds for the gamma function. J. Inequal. Appl. 2017, 2017, 210. [Google Scholar] [CrossRef] [Green Version]
- Belzunce, F.; Ortega, E.; Ruiz, J.M. On non-monotonic ageing properties from the Laplace transform, with actuarial applications. Insurance Math. Econ. 2007, 40, 1–14. [Google Scholar] [CrossRef]
- Borwein, J.M.; Borwein, P.B. Pi and the AGM; John Wiley and Sons: New York, NY, USA, 1987. [Google Scholar]
- Borwein, J.M.; Borwein, P.B. Inequalities for compound mean iterations with logarithmic asymptotes. J. Math. Anal. Appl. 1993, 177, 572–582. [Google Scholar] [CrossRef] [Green Version]
- Sándor, J. On certain inequalities for means. J. Math. Anal. Appl. 1995, 189, 602–606. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-H.; Song, Y.-Q.; Chu, Y.-M. Sharp bounds for the arithmetic-geometric mean. J. Inequal. Appl. 2014, 2014, 192. [Google Scholar] [CrossRef] [Green Version]
- Vamanamurthy, M.K.; Vuorinen, M. Inequalities for means. J. Math. Anal. Appl. 1994, 183, 155–166. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.-H.; Tian, J.-F.; Zhu, Y.-R. A Rational Approximation for the Complete Elliptic Integral of the First Kind. Mathematics 2020, 8, 635. https://doi.org/10.3390/math8040635
Yang Z-H, Tian J-F, Zhu Y-R. A Rational Approximation for the Complete Elliptic Integral of the First Kind. Mathematics. 2020; 8(4):635. https://doi.org/10.3390/math8040635
Chicago/Turabian StyleYang, Zhen-Hang, Jing-Feng Tian, and Ya-Ru Zhu. 2020. "A Rational Approximation for the Complete Elliptic Integral of the First Kind" Mathematics 8, no. 4: 635. https://doi.org/10.3390/math8040635
APA StyleYang, Z. -H., Tian, J. -F., & Zhu, Y. -R. (2020). A Rational Approximation for the Complete Elliptic Integral of the First Kind. Mathematics, 8(4), 635. https://doi.org/10.3390/math8040635