Fibonacci Numbers with a Prescribed Block of Digits
Abstract
:1. Introduction
2. Auxiliary Results
3. The Proof of The Theorem
3.1. Finding a Bound on N
3.2. Reducing the Bound
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
n | n | ||
---|---|---|---|
21 | 10946 | 280 | 14691098406862188148944207245954912110548093601382197697835 |
22 | 17711 | 279 | 9079598147510263717870894449029933369491131786514446266146 |
23 | 28657 | 278 | 5611500259351924431073312796924978741056961814867751431689 |
24 | 46368 | 277 | 3468097888158339286797581652104954628434169971646694834457 |
25 | 75025 | 276 | 2143402371193585144275731144820024112622791843221056597232 |
26 | 121393 | 275 | 1324695516964754142521850507284930515811378128425638237225 |
27 | 196418 | 274 | 818706854228831001753880637535093596811413714795418360007 |
28 | 317811 | 273 | 505988662735923140767969869749836918999964413630219877218 |
29 | 514229 | 272 | 312718191492907860985910767785256677811449301165198482789 |
30 | 832040 | 271 | 193270471243015279782059101964580241188515112465021394429 |
31 | 1346269 | 270 | 119447720249892581203851665820676436622934188700177088360 |
32 | 2178309 | 269 | 73822750993122698578207436143903804565580923764844306069 |
33 | 3524578 | 268 | 45624969256769882625644229676772632057353264935332782291 |
34 | 5702887 | 267 | 28197781736352815952563206467131172508227658829511523778 |
35 | 9227465 | 266 | 17427187520417066673081023209641459549125606105821258513 |
36 | 14930352 | 265 | 10770594215935749279482183257489712959102052723690265265 |
37 | 24157817 | 264 | 6656593304481317393598839952151746590023553382130993248 |
38 | 39088169 | 263 | 4114000911454431885883343305337966369078499341559272017 |
39 | 63245986 | 262 | 2542592393026885507715496646813780220945054040571721231 |
40 | 102334155 | 261 | 1571408518427546378167846658524186148133445300987550786 |
41 | 165580141 | 260 | 971183874599339129547649988289594072811608739584170445 |
42 | 267914296 | 259 | 600224643828207248620196670234592075321836561403380341 |
43 | 433494437 | 258 | 370959230771131880927453318055001997489772178180790104 |
44 | 701408733 | 257 | 229265413057075367692743352179590077832064383222590237 |
45 | 1134903170 | 256 | 141693817714056513234709965875411919657707794958199867 |
46 | 1836311903 | 255 | 87571595343018854458033386304178158174356588264390370 |
47 | 2971215073 | 254 | 54122222371037658776676579571233761483351206693809497 |
48 | 4807526976 | 253 | 33449372971981195681356806732944396691005381570580873 |
49 | 7778742049 | 252 | 20672849399056463095319772838289364792345825123228624 |
50 | 12586269025 | 251 | 12776523572924732586037033894655031898659556447352249 |
51 | 20365011074 | 250 | 7896325826131730509282738943634332893686268675876375 |
52 | 32951280099 | 249 | 4880197746793002076754294951020699004973287771475874 |
53 | 53316291173 | 248 | 3016128079338728432528443992613633888712980904400501 |
54 | 86267571272 | 247 | 1864069667454273644225850958407065116260306867075373 |
55 | 139583862445 | 246 | 1152058411884454788302593034206568772452674037325128 |
56 | 225851433717 | 245 | 712011255569818855923257924200496343807632829750245 |
57 | 365435296162 | 244 | 440047156314635932379335110006072428645041207574883 |
58 | 591286729879 | 243 | 271964099255182923543922814194423915162591622175362 |
59 | 956722026041 | 242 | 168083057059453008835412295811648513482449585399521 |
60 | 1548008755920 | 241 | 103881042195729914708510518382775401680142036775841 |
61 | 2504730781961 | 240 | 64202014863723094126901777428873111802307548623680 |
62 | 4052739537881 | 239 | 39679027332006820581608740953902289877834488152161 |
63 | 6557470319842 | 238 | 24522987531716273545293036474970821924473060471519 |
64 | 10610209857723 | 237 | 15156039800290547036315704478931467953361427680642 |
65 | 17167680177565 | 236 | 9366947731425726508977331996039353971111632790877 |
66 | 27777890035288 | 235 | 5789092068864820527338372482892113982249794889765 |
67 | 44945570212853 | 234 | 3577855662560905981638959513147239988861837901112 |
68 | 72723460248141 | 233 | 2211236406303914545699412969744873993387956988653 |
69 | 117669030460994 | 232 | 1366619256256991435939546543402365995473880912459 |
70 | 190392490709135 | 231 | 844617150046923109759866426342507997914076076194 |
71 | 308061521170129 | 230 | 522002106210068326179680117059857997559804836265 |
72 | 498454011879264 | 229 | 322615043836854783580186309282650000354271239929 |
73 | 806515533049393 | 228 | 199387062373213542599493807777207997205533596336 |
74 | 1304969544928657 | 227 | 123227981463641240980692501505442003148737643593 |
75 | 2111485077978050 | 226 | 76159080909572301618801306271765994056795952743 |
76 | 3416454622906707 | 225 | 47068900554068939361891195233676009091941690850 |
77 | 5527939700884757 | 224 | 29090180355503362256910111038089984964854261893 |
78 | 8944394323791464 | 223 | 17978720198565577104981084195586024127087428957 |
79 | 14472334024676221 | 222 | 11111460156937785151929026842503960837766832936 |
80 | 23416728348467685 | 221 | 6867260041627791953052057353082063289320596021 |
81 | 37889062373143906 | 220 | 4244200115309993198876969489421897548446236915 |
82 | 61305790721611591 | 219 | 2623059926317798754175087863660165740874359106 |
83 | 99194853094755497 | 218 | 1621140188992194444701881625761731807571877809 |
84 | 160500643816367088 | 217 | 1001919737325604309473206237898433933302481297 |
85 | 259695496911122585 | 216 | 619220451666590135228675387863297874269396512 |
86 | 420196140727489673 | 215 | 382699285659014174244530850035136059033084785 |
87 | 679891637638612258 | 214 | 236521166007575960984144537828161815236311727 |
88 | 1100087778366101931 | 213 | 146178119651438213260386312206974243796773058 |
89 | 1779979416004714189 | 212 | 90343046356137747723758225621187571439538669 |
90 | 2880067194370816120 | 211 | 55835073295300465536628086585786672357234389 |
91 | 4660046610375530309 | 210 | 34507973060837282187130139035400899082304280 |
92 | 7540113804746346429 | 209 | 21327100234463183349497947550385773274930109 |
93 | 12200160415121876738 | 208 | 13180872826374098837632191485015125807374171 |
94 | 19740274219868223167 | 207 | 8146227408089084511865756065370647467555938 |
95 | 31940434634990099905 | 206 | 5034645418285014325766435419644478339818233 |
96 | 51680708854858323072 | 205 | 3111581989804070186099320645726169127737705 |
97 | 83621143489848422977 | 204 | 1923063428480944139667114773918309212080528 |
98 | 135301852344706746049 | 203 | 1188518561323126046432205871807859915657177 |
99 | 218922995834555169026 | 202 | 734544867157818093234908902110449296423351 |
100 | 354224848179261915075 | 201 | 453973694165307953197296969697410619233826 |
101 | 573147844013817084101 | 200 | 280571172992510140037611932413038677189525 |
102 | 927372692193078999176 | 199 | 173402521172797813159685037284371942044301 |
103 | 1500520536206896083277 | 198 | 107168651819712326877926895128666735145224 |
104 | 2427893228399975082453 | 197 | 66233869353085486281758142155705206899077 |
105 | 3928413764606871165730 | 196 | 40934782466626840596168752972961528246147 |
106 | 6356306993006846248183 | 195 | 25299086886458645685589389182743678652930 |
107 | 10284720757613717413913 | 194 | 15635695580168194910579363790217849593217 |
108 | 16641027750620563662096 | 193 | 9663391306290450775010025392525829059713 |
109 | 26925748508234281076009 | 192 | 5972304273877744135569338397692020533504 |
110 | 43566776258854844738105 | 191 | 3691087032412706639440686994833808526209 |
111 | 70492524767089125814114 | 190 | 2281217241465037496128651402858212007295 |
112 | 114059301025943970552219 | 189 | 1409869790947669143312035591975596518914 |
113 | 184551825793033096366333 | 188 | 871347450517368352816615810882615488381 |
114 | 298611126818977066918552 | 187 | 538522340430300790495419781092981030533 |
115 | 483162952612010163284885 | 186 | 332825110087067562321196029789634457848 |
116 | 781774079430987230203437 | 185 | 205697230343233228174223751303346572685 |
117 | 1264937032042997393488322 | 184 | 127127879743834334146972278486287885163 |
118 | 2046711111473984623691759 | 183 | 78569350599398894027251472817058687522 |
119 | 3311648143516982017180081 | 182 | 48558529144435440119720805669229197641 |
120 | 5358359254990966640871840 | 181 | 30010821454963453907530667147829489881 |
121 | 8670007398507948658051921 | 180 | 18547707689471986212190138521399707760 |
122 | 14028366653498915298923761 | 179 | 11463113765491467695340528626429782121 |
123 | 22698374052006863956975682 | 178 | 7084593923980518516849609894969925639 |
124 | 36726740705505779255899443 | 177 | 4378519841510949178490918731459856482 |
125 | 59425114757512643212875125 | 176 | 2706074082469569338358691163510069157 |
126 | 96151855463018422468774568 | 175 | 1672445759041379840132227567949787325 |
127 | 155576970220531065681649693 | 174 | 1033628323428189498226463595560281832 |
128 | 251728825683549488150424261 | 173 | 638817435613190341905763972389505493 |
129 | 407305795904080553832073954 | 172 | 394810887814999156320699623170776339 |
130 | 659034621587630041982498215 | 171 | 244006547798191185585064349218729154 |
131 | 1066340417491710595814572169 | 170 | 150804340016807970735635273952047185 |
132 | 1725375039079340637797070384 | 169 | 93202207781383214849429075266681969 |
133 | 2791715456571051233611642553 | 168 | 57602132235424755886206198685365216 |
134 | 4517090495650391871408712937 | 167 | 35600075545958458963222876581316753 |
135 | 7308805952221443105020355490 | 166 | 22002056689466296922983322104048463 |
136 | 11825896447871834976429068427 | 165 | 13598018856492162040239554477268290 |
137 | 19134702400093278081449423917 | 164 | 8404037832974134882743767626780173 |
138 | 30960598847965113057878492344 | 163 | 5193981023518027157495786850488117 |
139 | 50095301248058391139327916261 | 162 | 3210056809456107725247980776292056 |
140 | 81055900096023504197206408605 | 161 | 1983924214061919432247806074196061 |
141 | 131151201344081895336534324866 | 160 | 1226132595394188293000174702095995 |
142 | 212207101440105399533740733471 | 159 | 757791618667731139247631372100066 |
143 | 343358302784187294870275058337 | 158 | 468340976726457153752543329995929 |
144 | 555565404224292694404015791808 | 157 | 289450641941273985495088042104137 |
145 | 898923707008479989274290850145 | 156 | 178890334785183168257455287891792 |
146 | 1454489111232772683678306641953 | 155 | 110560307156090817237632754212345 |
147 | 2353412818241252672952597492098 | 154 | 68330027629092351019822533679447 |
148 | 3807901929474025356630904134051 | 153 | 42230279526998466217810220532898 |
149 | 6161314747715278029583501626149 | 152 | 26099748102093884802012313146549 |
150 | 9969216677189303386214405760200 | 151 | 16130531424904581415797907386349 |
References
- Bugeaud, Y.; Mignotte, M.; Siksek, S. Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers. Ann. Math. 2006, 163, 969–1018. [Google Scholar] [CrossRef] [Green Version]
- Marques, D.; Togbé, A. Perfect powers among Fibonomial coefficients. C. R. Acad. Sci. Paris 2010, 348, 717–720. [Google Scholar] [CrossRef]
- Luca, F. Fibonacci and Lucas numbers with only one distinct digit. Port. Math. 2000, 57, 243–254. [Google Scholar]
- Adegbindin, C.; Luca, F.; Togbé, A. Lucas numbers as sums of two repdigits. Lith. Math. J. 2019, 59, 295–304. [Google Scholar] [CrossRef]
- Luca, F. Repdigits as sums of three Fibonacci numbers. Math. Commun. 2012, 17, 1–11. [Google Scholar]
- Marques, D.; Togbe, A. Fibonacci and Lucas numbers of the form 2a + 3b + 5c. Proc. Jpn. Acad. Ser. A Math. Sci. 2013, 89, 47–50. [Google Scholar] [CrossRef]
- Qu, Y.; Zeng, J.; Cao, Y. Fibonacci and Lucas Numbers of the Form 2a + 3b + 5c + 7d. Symmetry 2018, 10, 509. [Google Scholar] [CrossRef] [Green Version]
- Erduvan, F.; Keskin, R. Fibonacci and Lucas numbers as products of two repdigits. Turk. J. Math. 2019, 43, 2142–2153. [Google Scholar] [CrossRef]
- Alvarado, S.D.; Luca, F. Fibonacci numbers which are sums of two repdigits. In Proceedings of the XIVth International Conference on Fibonacci Numbers and Their Applications, Morelia, Mexico, 1–7 July 2011; pp. 97–108. [Google Scholar]
- Siar, Z.; Erduvan, F.; Keskin, R. Repdigits as product of two Pell or Pell-Lucas numbers. Acta Math. Univ. Comenian. 2019, 88, 247–256. [Google Scholar]
- Ddamulira, M. Repdigits as sums of three Padovan number. Boletín De La Soc. Matemática Mex. 2020, 26, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Alahmadi, A.; Altassan, A.; Luca, F.; Shoaib, H. Fibonacci numbers which are concatenations of two repdigits. Quaest. Math. 2020, 43, 1–10. [Google Scholar] [CrossRef]
- Trojovský, P. On Terms of Generalized Fibonacci Sequences which are Powers of their Indexes. Mathematics 2019, 7, 700. [Google Scholar] [CrossRef] [Green Version]
- Dujella, A.; Pethö, A. A generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxf. Ser. 1998, 49, 291–306. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trojovský, P. Fibonacci Numbers with a Prescribed Block of Digits. Mathematics 2020, 8, 639. https://doi.org/10.3390/math8040639
Trojovský P. Fibonacci Numbers with a Prescribed Block of Digits. Mathematics. 2020; 8(4):639. https://doi.org/10.3390/math8040639
Chicago/Turabian StyleTrojovský, Pavel. 2020. "Fibonacci Numbers with a Prescribed Block of Digits" Mathematics 8, no. 4: 639. https://doi.org/10.3390/math8040639
APA StyleTrojovský, P. (2020). Fibonacci Numbers with a Prescribed Block of Digits. Mathematics, 8(4), 639. https://doi.org/10.3390/math8040639