Inertial Krasnoselskii–Mann Method in Banach Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- X is q-uniformly smooth.
- (ii)
- There is a constant such that for all
- (i)
- For , .
- (ii)
- For and , .
- (i)
- If for some , then is a bounded sequence.
- (ii)
- If and , then .
- (i)
- where
- (ii)
- there exists such that
- (a)
- (b)
- ;
- (c)
3. The Algorithm
Algorithm 1 Inertial Krasnoselskii–Mann iteration. |
|
Convergence Analysis
- (a)
- We mention here that quasi-nonexpansiveness is a weaker sufficient condition for Theorem 1.
- (b)
- It can also be shown in Theorem 1 that
- (i)
- A is α-isa of order q, B is β-strongly accretive of order q, and .
- (ii)
- , A is β-strongly accretive and L-Lipschitz on E with .
- (i)
- if A is of order q, B is β-strongly accretive of order q, and and
- (ii)
- if , A is β-strongly accretive and L-Lipschitz on E with .
- 1.
- 2.
- 3.
- Shehu in [37] obtained a nonasymptotic convergence rate result for a Krasnoselskii–Mann iteration with inertial extrapolation step in real Hilbert spaces under the stringent condition of Boţ et al. [17] (Theorem 5). In this paper, we obtain the results for Krasnoselskii–Mann iteration with inertial extrapolation step under easy assumptions and give some complexity results in uniformly convex Banach spaces.
- 4.
- Themelis and Patrinos in [38] study a Newton-type generalization of the classical Krasnoselskii–Mann iteration in Hilbert spaces and obtained superlinear convergence when the direction satisfies Dennis-More condition in Hilbert spaces. However, Themelis and Patrinos in [38] do not consider Krasnoselskii–Mann iteration with inertial steps. Our results here involve inertial Krasnoselskii–Mann iteration obtained in a higher space viz, uniformly convex Banach space which extends Hilbert space.
- 5.
- In [39], Phon-on et al. established inertial S-iteration in Banach spaces and obtained convergence under boundedness of some generated sequence. In this paper, the boundedness assumption of any generated sequence is dispensed with in our results. Therefore, our results improve on the results of this paper.
4. Numerical Illustration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
isa | inverse strongly accretive |
SCFP | split convex feasibility problem |
References
- Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2, 183–202. [Google Scholar] [CrossRef] [Green Version]
- Bertsekas, D.P.; Tsitsiklis, J.N. Parallel and Distributed Computation: Numerical Methods; Athena Scientific: Belmont, MA, USA, 1997. [Google Scholar]
- Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 2005, 4, 1168–1200. [Google Scholar] [CrossRef] [Green Version]
- Duchi, J.; Shalev-Shwartz, S.; Singer, Y.; Chandra, T. Efficient projections onto the l1-ball for learning in high dimensions. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008. [Google Scholar]
- Tibshirami, R. Regression shrinkage and selection via lasso. J. Roy. Statist. Soc. Ser. B 1996, 58, 267–288. [Google Scholar]
- Lions, P.L.; Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16, 964–979. [Google Scholar] [CrossRef]
- Passty, G.B. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 1979, 72, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Brézis, H.; Lions, P.L. Produits infinis de resolvantes. Isr. J. Math. 1978, 29, 329–345. [Google Scholar] [CrossRef]
- Chen, G.H.G.; Rockafellar, R.T. Convergence rates in forward-backward splitting. SIAM J. Optim. 1997, 7, 421–444. [Google Scholar] [CrossRef] [Green Version]
- Güler, O. On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 1991, 29, 403–419. [Google Scholar] [CrossRef]
- Martinet, B. Régularisation d’inéquations variationnelles par approximations successives. Rev. Française Informat. Recherche. Opérationnelle. 1970, 4, 154–158. [Google Scholar]
- Rockafellar, R.T. Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 1976, 14, 877–898. [Google Scholar] [CrossRef] [Green Version]
- Dunn, J.C. Convexity, monotonicity, and gradient processes in Hilbert space. J. Math. Anal. Appl. 1976, 53, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Polyak, B.T. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 1964, 4, 1–17. [Google Scholar] [CrossRef]
- Tseng, P. A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 2000, 38, 431–446. [Google Scholar] [CrossRef]
- Alvarez, F.; Attouch, H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Anal. 2001, 9, 3–11. [Google Scholar] [CrossRef]
- Bot, R.I.; Csetnek, E.R.; Hendrich, C. Inertial Douglas–Rachford splitting for monotone inclusion problems. Appl. Math. Comput. 2015, 256, 472–487. [Google Scholar]
- Chen, C.; Chan, R.H.; Ma, S.; Yang, J. Inertial proximal ADMM for linearly constrained separable convex optimization. SIAM J. Imaging Sci. 2015, 8, 2239–2267. [Google Scholar] [CrossRef]
- Lorenz, D.A.; Pock, T. An inertial forward-backward algorithm for monotone inclusions. J. Math. Imaging Vis. 2015, 51, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Moudafi, A.; Oliny, M. Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 2003, 155, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Pesquet, J.-C.; Pustelnik, N. A parallel inertial proximal optimization methods. Pac. J. Optim. 2012, 8, 273–305. [Google Scholar]
- Attouch, H.; Alexandre, C. Convergence of a relaxed inertial forward–backward algorithm for structured monotone inclusions. Appl. Math. Optim. 2019, 80, 547–598. [Google Scholar] [CrossRef]
- Cholamjiak, W.; Cholamjiak, P.; Suantai, S. An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces. J. Fixed Point Theory Appl. 2018, 20, 42. [Google Scholar] [CrossRef]
- Dong, Q.L.; Jiang, D.; Cholamjiak, P.; Shehu, Y. A strong convergence result involving an inertial forward-backward algorithm for monotone inclusions. J. Fixed Point Theory Appl. 2017, 19, 3097–3118. [Google Scholar] [CrossRef]
- López, G.; Martín-Márquez, V.; Wang, F.; Xu, H.K. Forward-Backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. 2012, 2012, 109236. [Google Scholar] [CrossRef] [Green Version]
- Maingé, P.E. Approximation method for common fixed points of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2007, 325, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Cioranescu, I. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems; Kluwer Academic Publishers: Berlin, Germany, 1990. [Google Scholar]
- Xu, H.K. Inequalities in Banach spaces with applications. Nonlinear Anal. 1991, 16, 1127–1138. [Google Scholar] [CrossRef]
- Chidume, C. Geometric Properties of Banach Spaces and Nonlinear Iterations; Springer: Berlin, Germany, 2009. [Google Scholar]
- Maingé, P.E. Convergence theorems for inertial KM-type algorithms. J. Comput. Appl. Math. 2008, 219, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Xu, H.K. Iterative algorithms for nonlinear operators. J. London. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Reich, S. Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 1979, 67, 274–276. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.L.; Yuan, H.B.; Cho, Y.J.; Rassias, T.M. Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 2018, 12, 87–102. [Google Scholar] [CrossRef]
- Maingé, P.E. Inertial iterative process for fixed points of certain quasi-nonexpansive mappings. Set Valued Anal. 2007, 15, 67–79. [Google Scholar] [CrossRef]
- Bot, R.I.; Csetnek, E.R. An inertial forward-backward-forward primal-dual splitting algorithm for solving monotone inclusion problems. Numer. Algorithm 2016, 71, 519–540. [Google Scholar] [CrossRef] [Green Version]
- Shehu, Y. Convergence rate Analysis of inertial Krasnoselskii-Mann-type iteration with applications. Numer. Funct. Anal. Optim. 2018, 39, 1077–1091. [Google Scholar] [CrossRef]
- Themelis, A.; Patrinos, P. SuperMann: A superlinearly convergent algorithm for finding fixed points of nonexpansive operators. IEEE Trans. Automat. Control 2019, 64, 4875–4890. [Google Scholar] [CrossRef] [Green Version]
- Phon-on, A.; Makaje, N.; Sama-Ae, A.; Khongraphan, K. An inertial S-iteration process. Fixed Point Theory Appl. 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 1994, 8, 221–239. [Google Scholar] [CrossRef]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-9466-0. [Google Scholar]
- Cegielski, A. Iterative Methods for Fixed Point Problems in Hilbert Spaces; Lecture Notes in Mathematics 2057; Springer: Berlin, Germany, 2012. [Google Scholar]
Starting Points | CPU Time | Iterations | ||
---|---|---|---|---|
Algorithm 1 | Classical KM | Algorithm 1 | Classical KM | |
0.054 | 0.201 | 7 | 17 | |
0.056 | 0.254 | 11 | 28 | |
0.0653 | 0.103 | 4 | 15 | |
0.0732 | 0.142 | 5 | 15 | |
0.103 | 0.243 | 9 | 14 |
p | CPU Time | |||
---|---|---|---|---|
Algorithm 1 | Shehu’s Algorithm | Algorithm 1 | Shehu’s Algorithm | |
4 | 1.1250 | 1.2813 | 11.7172 | 11.7172 |
10 | 0.9531 | 1.3906 | 3.8892 | 4.8892 |
1000 | 0.0625 | 0.2500 | 2.1135 | 2.8135 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shehu, Y.; Gibali, A. Inertial Krasnoselskii–Mann Method in Banach Spaces. Mathematics 2020, 8, 638. https://doi.org/10.3390/math8040638
Shehu Y, Gibali A. Inertial Krasnoselskii–Mann Method in Banach Spaces. Mathematics. 2020; 8(4):638. https://doi.org/10.3390/math8040638
Chicago/Turabian StyleShehu, Yekini, and Aviv Gibali. 2020. "Inertial Krasnoselskii–Mann Method in Banach Spaces" Mathematics 8, no. 4: 638. https://doi.org/10.3390/math8040638
APA StyleShehu, Y., & Gibali, A. (2020). Inertial Krasnoselskii–Mann Method in Banach Spaces. Mathematics, 8(4), 638. https://doi.org/10.3390/math8040638